Spatial & Ensemble Metrics
Spatial verification and ensemble analysis metrics.
Spatial and Ensemble Metrics for Atmospheric Sciences (Aero Protocol Compliant)
BSS(obs, mod, threshold)
Brier Skill Score (BSS) for probabilistic forecasts.
Typical Use Cases
- Evaluating the accuracy of probabilistic binary forecasts relative to climatology.
- Common in meteorological verification for event occurrence.
Parameters
obs : xarray.DataArray or numpy.ndarray Observed binary outcomes (0 or 1) or continuous values (will be binarized). mod : xarray.DataArray or numpy.ndarray Forecast probabilities (0 to 1) or continuous values (will be binarized). threshold : float Threshold for converting values to binary events.
Returns
xarray.DataArray or numpy.ndarray or float Brier Skill Score.
Source code in src/monet_stats/spatial_ensemble_metrics.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
CRPS(ensemble, obs, axis=0)
Continuous Ranked Probability Score (CRPS) for ensemble forecasts.
Supports lazy evaluation via Xarray/Dask.
Parameters
ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. If DataArray, should have an ensemble dimension. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.
Returns
xarray.DataArray or numpy.ndarray CRPS values.
Examples
import numpy as np ens = np.array([[1, 2], [2, 3], [3, 4]]) obs = np.array([2, 3]) CRPS(ens, obs, axis=0) array([0.22222222, 0.22222222])
Source code in src/monet_stats/spatial_ensemble_metrics.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
EDS(obs, mod, threshold)
Extreme Dependency Score (EDS) for rare event detection.
Typical Use Cases
- Assessing model performance for rare extreme events (e.g., heavy precipitation).
- Used when traditional scores like CSI or ETS go to zero as the event becomes rarer.
Parameters
obs : xarray.DataArray or numpy.ndarray Observed field. mod : xarray.DataArray or numpy.ndarray Model field. threshold : float Event threshold to define the extreme event.
Returns
xarray.DataArray or numpy.ndarray or float Extreme Dependency Score.
Examples
import numpy as np obs = np.zeros((10, 10)); obs[5, 5] = 1 mod = np.zeros((10, 10)); mod[5, 5] = 1 EDS(obs, mod, threshold=0.5) 1.0
Source code in src/monet_stats/spatial_ensemble_metrics.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | |
SAL(obs, mod, threshold=None)
Structure-Amplitude-Location (SAL) score for spatial verification.
Note: This metric currently triggers computation for Xarray/Dask inputs as it relies on scipy.ndimage for object identification.
Parameters
obs : xarray.DataArray or numpy.ndarray Observed 2D field. mod : xarray.DataArray or numpy.ndarray Model 2D field. threshold : float, optional Threshold for object identification. If None, uses mean of obs.
Returns
S : float Structure component (-2 to 2, 0 is best). A : float Amplitude component (-2 to 2, 0 is best). L : float Location component (0 to 2, 0 is best).
Source code in src/monet_stats/spatial_ensemble_metrics.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |
ensemble_mean(ensemble, axis=0)
Calculate the ensemble mean.
Parameters
ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.
Returns
xarray.DataArray or numpy.ndarray Ensemble mean.
Source code in src/monet_stats/spatial_ensemble_metrics.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | |
ensemble_std(ensemble, axis=0)
Calculate the ensemble standard deviation.
Parameters
ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.
Returns
xarray.DataArray or numpy.ndarray Ensemble standard deviation.
Source code in src/monet_stats/spatial_ensemble_metrics.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | |
rank_histogram(ensemble, obs, axis=0)
Calculate the rank histogram counts.
Parameters
ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.
Returns
xarray.DataArray or numpy.ndarray Rank histogram counts.
Examples
import numpy as np ens = np.array([[1, 2], [2, 3], [3, 4]]) obs = np.array([2, 3]) rank_histogram(ens, obs, axis=0) array([0., 0., 2., 0.])
Source code in src/monet_stats/spatial_ensemble_metrics.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | |
spread_error(ensemble, obs, axis=0)
Spread-Error Relationship for ensemble forecasts.
Typical Use Cases
- Assessing if the ensemble spread is a good proxy for the forecast error.
- Ideally, mean spread should equal RMSE of the ensemble mean.
Parameters
ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.
Returns
mean_spread : float or xarray.DataArray Mean ensemble spread. mean_error : float or xarray.DataArray Mean absolute error of ensemble mean vs. obs.
Source code in src/monet_stats/spatial_ensemble_metrics.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | |