Skip to content

Spatial & Ensemble Metrics

Spatial verification and ensemble analysis metrics.

Spatial and Ensemble Metrics for Atmospheric Sciences (Aero Protocol Compliant)

BSS(obs, mod, threshold)

Brier Skill Score (BSS) for probabilistic forecasts.

Typical Use Cases

  • Evaluating the accuracy of probabilistic binary forecasts relative to climatology.
  • Common in meteorological verification for event occurrence.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed binary outcomes (0 or 1) or continuous values (will be binarized). mod : xarray.DataArray or numpy.ndarray Forecast probabilities (0 to 1) or continuous values (will be binarized). threshold : float Threshold for converting values to binary events.

Returns

xarray.DataArray or numpy.ndarray or float Brier Skill Score.

Source code in src/monet_stats/spatial_ensemble_metrics.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def BSS(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    threshold: float,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Brier Skill Score (BSS) for probabilistic forecasts.

    Typical Use Cases
    -----------------
    - Evaluating the accuracy of probabilistic binary forecasts relative to climatology.
    - Common in meteorological verification for event occurrence.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed binary outcomes (0 or 1) or continuous values (will be binarized).
    mod : xarray.DataArray or numpy.ndarray
        Forecast probabilities (0 to 1) or continuous values (will be binarized).
    threshold : float
        Threshold for converting values to binary events.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Brier Skill Score.
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Binarize if not already
        o_bin = (obs >= threshold).astype(float)
        m_prob = (mod >= threshold).astype(float)

        bs = ((m_prob - o_bin) ** 2).mean()
        obs_clim = o_bin.mean()
        bs_ref = ((obs_clim - o_bin) ** 2).mean()

        res = xr.where(bs_ref != 0, 1 - (bs / bs_ref), 0.0)
        return _update_history(res, "Brier Skill Score (BSS)")

    o = np.asarray(obs)
    m = np.asarray(mod)
    o_bin = (o >= threshold).astype(float)
    m_prob = (m >= threshold).astype(float)

    bs = np.mean((m_prob - o_bin) ** 2)
    obs_clim = np.mean(o_bin)
    bs_ref = np.mean((obs_clim - o_bin) ** 2)

    if bs_ref == 0:
        return 0.0
    return 1 - (bs / bs_ref)

CRPS(ensemble, obs, axis=0)

Continuous Ranked Probability Score (CRPS) for ensemble forecasts.

Supports lazy evaluation via Xarray/Dask.

Parameters

ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. If DataArray, should have an ensemble dimension. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.

Returns

xarray.DataArray or numpy.ndarray CRPS values.

Examples

import numpy as np ens = np.array([[1, 2], [2, 3], [3, 4]]) obs = np.array([2, 3]) CRPS(ens, obs, axis=0) array([0.22222222, 0.22222222])

Source code in src/monet_stats/spatial_ensemble_metrics.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def CRPS(
    ensemble: Union[xr.DataArray, np.ndarray],
    obs: Union[xr.DataArray, np.ndarray],
    axis: Union[int, str] = 0,
) -> Union[xr.DataArray, np.ndarray]:
    """
    Continuous Ranked Probability Score (CRPS) for ensemble forecasts.

    Supports lazy evaluation via Xarray/Dask.

    Parameters
    ----------
    ensemble : xarray.DataArray or numpy.ndarray
        Ensemble forecasts. If DataArray, should have an ensemble dimension.
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    axis : int or str, optional
        Axis or dimension corresponding to ensemble members. Default is 0.

    Returns
    -------
    xarray.DataArray or numpy.ndarray
        CRPS values.

    Examples
    --------
    >>> import numpy as np
    >>> ens = np.array([[1, 2], [2, 3], [3, 4]])
    >>> obs = np.array([2, 3])
    >>> CRPS(ens, obs, axis=0)
    array([0.22222222, 0.22222222])
    """

    def _crps_numpy(ens, observation, ens_axis=0):
        ens_sorted = np.sort(ens, axis=ens_axis)
        n = ens.shape[ens_axis]
        # Compute empirical CDFs
        cdf_ens = np.arange(1, n + 1) / n
        shape = [1] * ens.ndim
        shape[ens_axis] = n
        cdf_ens = np.reshape(cdf_ens, shape)
        # Broadcast obs for comparison
        obs_broadcast = np.expand_dims(observation, ens_axis)
        cdf_obs = (ens_sorted >= obs_broadcast).astype(float)
        return np.sum((cdf_ens - cdf_obs) ** 2, axis=ens_axis)

    if isinstance(ensemble, xr.DataArray) and isinstance(obs, xr.DataArray):
        # Determine core dimension
        if isinstance(axis, int):
            ens_dim = ensemble.dims[axis]
        else:
            ens_dim = axis

        res = xr.apply_ufunc(
            _crps_numpy,
            ensemble,
            obs,
            input_core_dims=[[ens_dim], []],
            output_core_dims=[[]],
            kwargs={"ens_axis": -1},
            dask="parallelized",
            output_dtypes=[float],
            dask_gufunc_kwargs={"allow_rechunk": True},
        )
        return _update_history(res, "Continuous Ranked Probability Score (CRPS)")

    return _crps_numpy(np.asarray(ensemble), np.asarray(obs), ens_axis=axis)

EDS(obs, mod, threshold)

Extreme Dependency Score (EDS) for rare event detection.

Typical Use Cases

  • Assessing model performance for rare extreme events (e.g., heavy precipitation).
  • Used when traditional scores like CSI or ETS go to zero as the event becomes rarer.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed field. mod : xarray.DataArray or numpy.ndarray Model field. threshold : float Event threshold to define the extreme event.

Returns

xarray.DataArray or numpy.ndarray or float Extreme Dependency Score.

Examples

import numpy as np obs = np.zeros((10, 10)); obs[5, 5] = 1 mod = np.zeros((10, 10)); mod[5, 5] = 1 EDS(obs, mod, threshold=0.5) 1.0

Source code in src/monet_stats/spatial_ensemble_metrics.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def EDS(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    threshold: float,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Extreme Dependency Score (EDS) for rare event detection.

    Typical Use Cases
    -----------------
    - Assessing model performance for rare extreme events (e.g., heavy precipitation).
    - Used when traditional scores like CSI or ETS go to zero as the event becomes rarer.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed field.
    mod : xarray.DataArray or numpy.ndarray
        Model field.
    threshold : float
        Event threshold to define the extreme event.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Extreme Dependency Score.

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.zeros((10, 10)); obs[5, 5] = 1
    >>> mod = np.zeros((10, 10)); mod[5, 5] = 1
    >>> EDS(obs, mod, threshold=0.5)
    1.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        obs_bin = obs >= threshold
        mod_bin = mod >= threshold
        hits = (obs_bin & mod_bin).sum()
        n_obs = obs_bin.sum()
        n_mod = mod_bin.sum()
        n = obs.size

        # Use xr.where for lazy evaluation
        p = n_obs / n
        q = n_mod / n

        # We need to handle the log carefully for dask
        eds = np.log(hits / n) / np.log(p * q)
        # Handle cases where hits=0 or n_obs/n_mod=0 which would result in inf/nan
        # EDS is undefined if p=0 or q=0 or hits=0
        res = xr.where((hits > 0) & (p > 0) & (q > 0), eds, np.nan)
        return _update_history(res, "Extreme Dependency Score (EDS)")

    obs_bin = np.asarray(obs) >= threshold
    mod_bin = np.asarray(mod) >= threshold
    hits = np.logical_and(obs_bin, mod_bin).sum()
    n_obs = obs_bin.sum()
    n_mod = mod_bin.sum()
    n = np.size(obs)
    if hits == 0 or n_obs == 0 or n_mod == 0:
        return np.nan
    p = n_obs / n
    q = n_mod / n
    return np.log(hits / n) / np.log(p * q)

SAL(obs, mod, threshold=None)

Structure-Amplitude-Location (SAL) score for spatial verification.

Note: This metric currently triggers computation for Xarray/Dask inputs as it relies on scipy.ndimage for object identification.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed 2D field. mod : xarray.DataArray or numpy.ndarray Model 2D field. threshold : float, optional Threshold for object identification. If None, uses mean of obs.

Returns

S : float Structure component (-2 to 2, 0 is best). A : float Amplitude component (-2 to 2, 0 is best). L : float Location component (0 to 2, 0 is best).

Source code in src/monet_stats/spatial_ensemble_metrics.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def SAL(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    threshold: Optional[float] = None,
) -> Tuple[float, float, float]:
    """
    Structure-Amplitude-Location (SAL) score for spatial verification.

    Note: This metric currently triggers computation for Xarray/Dask inputs
    as it relies on scipy.ndimage for object identification.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed 2D field.
    mod : xarray.DataArray or numpy.ndarray
        Model 2D field.
    threshold : float, optional
        Threshold for object identification. If None, uses mean of obs.

    Returns
    -------
    S : float
        Structure component (-2 to 2, 0 is best).
    A : float
        Amplitude component (-2 to 2, 0 is best).
    L : float
        Location component (0 to 2, 0 is best).
    """
    import scipy.ndimage as ndi

    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        # We explicitly compute for now because SAL is inherently non-local
        # and hard to dask-ify without complex overlapping.
        obs_np = obs.values
        mod_np = mod.values
    else:
        obs_np = np.asarray(obs)
        mod_np = np.asarray(mod)

    if threshold is None:
        threshold = np.nanmean(obs_np)

    # Amplitude
    denom_a = np.nanmean(mod_np) + np.nanmean(obs_np)
    A = 2 * (np.nanmean(mod_np) - np.nanmean(obs_np)) / denom_a if denom_a != 0 else 0.0

    # Structure
    def structure(X):
        labeled, n = ndi.label(threshold <= X)
        if n == 0:
            return 0.0, 0.0
        masses = ndi.sum(X, labeled, index=np.arange(1, n + 1))
        max_mass = np.max(masses)
        total_mass = np.sum(masses)
        return max_mass, total_mass

    max_mod, sum_mod = structure(mod_np)
    max_obs, sum_obs = structure(obs_np)
    denom_s = (max_mod / sum_mod + max_obs / sum_obs) if sum_mod > 0 and sum_obs > 0 else 0
    S = 2 * (max_mod / sum_mod - max_obs / sum_obs) / denom_s if denom_s != 0 else 0.0

    # Location
    def centroid(X):
        labeled, n = ndi.label(threshold <= X)
        if n == 0:
            return np.array([np.nan, np.nan])
        centers = np.array(ndi.center_of_mass(X, labeled, index=np.arange(1, n + 1)))
        masses = ndi.sum(X, labeled, index=np.arange(1, n + 1))
        weighted = np.average(centers, axis=0, weights=masses)
        return weighted

    c_mod = centroid(mod_np)
    c_obs = centroid(obs_np)
    dist = np.linalg.norm(c_mod - c_obs)
    max_dist = np.sqrt(obs_np.shape[0] ** 2 + obs_np.shape[1] ** 2)
    L1 = dist / max_dist if max_dist != 0 else 0.0

    # Spread of objects
    def spread(X):
        labeled, n = ndi.label(threshold <= X)
        if n == 0:
            return 0.0
        centers = np.array(ndi.center_of_mass(X, labeled, index=np.arange(1, n + 1)))
        masses = ndi.sum(X, labeled, index=np.arange(1, n + 1))
        c = np.average(centers, axis=0, weights=masses)
        return np.average(np.linalg.norm(centers - c, axis=1), weights=masses)

    r_mod = spread(mod_np)
    r_obs = spread(obs_np)
    L2 = abs(r_mod - r_obs) / max_dist if max_dist != 0 else 0.0
    L = L1 + L2
    return S, A, L

ensemble_mean(ensemble, axis=0)

Calculate the ensemble mean.

Parameters

ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.

Returns

xarray.DataArray or numpy.ndarray Ensemble mean.

Source code in src/monet_stats/spatial_ensemble_metrics.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def ensemble_mean(
    ensemble: Union[xr.DataArray, np.ndarray],
    axis: Union[int, str] = 0,
) -> Union[xr.DataArray, np.ndarray]:
    """
    Calculate the ensemble mean.

    Parameters
    ----------
    ensemble : xarray.DataArray or numpy.ndarray
        Ensemble forecasts.
    axis : int or str, optional
        Axis or dimension corresponding to ensemble members. Default is 0.

    Returns
    -------
    xarray.DataArray or numpy.ndarray
        Ensemble mean.
    """
    if isinstance(ensemble, xr.DataArray):
        dim = axis
        if isinstance(axis, int):
            dim = ensemble.dims[axis]
        res = ensemble.mean(dim=dim)
        return _update_history(res, "Ensemble Mean")
    return np.mean(ensemble, axis=axis)

ensemble_std(ensemble, axis=0)

Calculate the ensemble standard deviation.

Parameters

ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.

Returns

xarray.DataArray or numpy.ndarray Ensemble standard deviation.

Source code in src/monet_stats/spatial_ensemble_metrics.py
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def ensemble_std(
    ensemble: Union[xr.DataArray, np.ndarray],
    axis: Union[int, str] = 0,
) -> Union[xr.DataArray, np.ndarray]:
    """
    Calculate the ensemble standard deviation.

    Parameters
    ----------
    ensemble : xarray.DataArray or numpy.ndarray
        Ensemble forecasts.
    axis : int or str, optional
        Axis or dimension corresponding to ensemble members. Default is 0.

    Returns
    -------
    xarray.DataArray or numpy.ndarray
        Ensemble standard deviation.
    """
    if isinstance(ensemble, xr.DataArray):
        dim = axis
        if isinstance(axis, int):
            dim = ensemble.dims[axis]
        res = ensemble.std(dim=dim)
        return _update_history(res, "Ensemble Standard Deviation")
    return np.std(ensemble, axis=axis)

rank_histogram(ensemble, obs, axis=0)

Calculate the rank histogram counts.

Parameters

ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.

Returns

xarray.DataArray or numpy.ndarray Rank histogram counts.

Examples

import numpy as np ens = np.array([[1, 2], [2, 3], [3, 4]]) obs = np.array([2, 3]) rank_histogram(ens, obs, axis=0) array([0., 0., 2., 0.])

Source code in src/monet_stats/spatial_ensemble_metrics.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
def rank_histogram(
    ensemble: Union[xr.DataArray, np.ndarray],
    obs: Union[xr.DataArray, np.ndarray],
    axis: Union[int, str] = 0,
) -> Union[xr.DataArray, np.ndarray]:
    """
    Calculate the rank histogram counts.

    Parameters
    ----------
    ensemble : xarray.DataArray or numpy.ndarray
        Ensemble forecasts.
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    axis : int or str, optional
        Axis or dimension corresponding to ensemble members. Default is 0.

    Returns
    -------
    xarray.DataArray or numpy.ndarray
        Rank histogram counts.

    Examples
    --------
    >>> import numpy as np
    >>> ens = np.array([[1, 2], [2, 3], [3, 4]])
    >>> obs = np.array([2, 3])
    >>> rank_histogram(ens, obs, axis=0)
    array([0., 0., 2., 0.])
    """

    def _rank_numpy(ens, observation, ens_axis=0):
        o_exp = np.expand_dims(observation, ens_axis)
        full_ensemble = np.concatenate([ens, o_exp], axis=ens_axis)
        ranks = np.argsort(full_ensemble, axis=ens_axis)
        obs_rank = np.argmax(ranks == ens.shape[ens_axis], axis=ens_axis)
        n_ens = ens.shape[ens_axis]
        hist, _ = np.histogram(obs_rank, bins=np.arange(n_ens + 2))
        return hist.astype(float)

    if isinstance(ensemble, xr.DataArray) and isinstance(obs, xr.DataArray):
        if isinstance(axis, int):
            ens_dim = ensemble.dims[axis]
        else:
            ens_dim = axis

        def _rank_ufunc(ens, observation):
            o_exp = np.expand_dims(observation, -1)
            full_ensemble = np.concatenate([ens, o_exp], axis=-1)
            ranks = np.argsort(full_ensemble, axis=-1)
            return np.argmax(ranks == ens.shape[-1], axis=-1)

        obs_rank = xr.apply_ufunc(
            _rank_ufunc,
            ensemble,
            obs,
            input_core_dims=[[ens_dim], []],
            output_core_dims=[[]],
            dask="parallelized",
            output_dtypes=[int],
        )

        n_ens = ensemble.sizes[ens_dim]
        bins = np.arange(n_ens + 2)
        if hasattr(obs_rank.data, "dask"):
            import dask.array as da

            hist, _ = da.histogram(obs_rank.data, bins=bins)
            res = xr.DataArray(hist, dims="rank", coords={"rank": np.arange(n_ens + 1)})
        else:
            hist, _ = np.histogram(obs_rank.values, bins=bins)
            res = xr.DataArray(hist, dims="rank", coords={"rank": np.arange(n_ens + 1)})
        return _update_history(res, "Rank Histogram")

    return _rank_numpy(np.asarray(ensemble), np.asarray(obs), ens_axis=axis)

spread_error(ensemble, obs, axis=0)

Spread-Error Relationship for ensemble forecasts.

Typical Use Cases

  • Assessing if the ensemble spread is a good proxy for the forecast error.
  • Ideally, mean spread should equal RMSE of the ensemble mean.

Parameters

ensemble : xarray.DataArray or numpy.ndarray Ensemble forecasts. obs : xarray.DataArray or numpy.ndarray Observed values. axis : int or str, optional Axis or dimension corresponding to ensemble members. Default is 0.

Returns

mean_spread : float or xarray.DataArray Mean ensemble spread. mean_error : float or xarray.DataArray Mean absolute error of ensemble mean vs. obs.

Source code in src/monet_stats/spatial_ensemble_metrics.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def spread_error(
    ensemble: Union[xr.DataArray, np.ndarray],
    obs: Union[xr.DataArray, np.ndarray],
    axis: Union[int, str] = 0,
) -> Tuple[Any, Any]:
    """
    Spread-Error Relationship for ensemble forecasts.

    Typical Use Cases
    -----------------
    - Assessing if the ensemble spread is a good proxy for the forecast error.
    - Ideally, mean spread should equal RMSE of the ensemble mean.

    Parameters
    ----------
    ensemble : xarray.DataArray or numpy.ndarray
        Ensemble forecasts.
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    axis : int or str, optional
        Axis or dimension corresponding to ensemble members. Default is 0.

    Returns
    -------
    mean_spread : float or xarray.DataArray
        Mean ensemble spread.
    mean_error : float or xarray.DataArray
        Mean absolute error of ensemble mean vs. obs.
    """
    if isinstance(ensemble, xr.DataArray) and isinstance(obs, xr.DataArray):
        if isinstance(axis, int):
            dim = ensemble.dims[axis]
        else:
            dim = axis

        spread = ensemble.std(dim=dim)
        ens_mean = ensemble.mean(dim=dim)
        error = abs(ens_mean - obs)

        # We return means over all remaining dimensions as well?
        # The original implementation returned np.mean(spread), np.mean(error)
        # which are scalars.
        m_spread = spread.mean()
        m_error = error.mean()

        return _update_history(m_spread, "Mean Ensemble Spread"), _update_history(m_error, "Mean Ensemble Error")

    ens = np.asarray(ensemble)
    observation = np.asarray(obs)
    spread = np.std(ens, axis=axis)
    ens_mean = np.mean(ens, axis=axis)
    error = np.abs(ens_mean - observation)
    return np.mean(spread), np.mean(error)