Skip to content

Relative Metrics

Normalized and relative error measures for model evaluation.

Relative/Percentage Metrics for Model Evaluation (Aero Protocol Compliant)

FB(obs, mod, axis=None)

Fractional Bias (%)

Typical Use Cases

  • Quantifying the average bias as a fraction of the sum of model and observed values.
  • Used in air quality and meteorological model evaluation for normalized bias assessment.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Fractional bias (percent).

Source code in src/monet_stats/relative_metrics.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def FB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Fractional Bias (%)

    Typical Use Cases
    -----------------
    - Quantifying the average bias as a fraction of the sum of model and observed values.
    - Used in air quality and meteorological model evaluation for normalized bias assessment.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Fractional bias (percent).

    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (((mod - obs) / (mod + obs)).mean(dim=dim) * 2.0) * 100.0
        return _update_history(res, "Fractional Bias (FB)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return (np.ma.masked_invalid((mod_arr - obs_arr) / (mod_arr + obs_arr)).mean(axis=axis) * 2.0) * 100.0

FE(obs, mod, axis=None)

Fractional Error (%)

Typical Use Cases

  • Quantifying the average magnitude of model errors as a fraction of the sum of model and observed values.
  • Used in air quality and meteorological model evaluation for normalized error assessment.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Fractional error (percent).

Source code in src/monet_stats/relative_metrics.py
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
def FE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Fractional Error (%)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of model errors as a fraction of the sum of model and observed values.
    - Used in air quality and meteorological model evaluation for normalized error assessment.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Fractional error (percent).

    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod - obs) / (mod + obs)).mean(dim=dim) * 2.0 * 100.0
        return _update_history(res, "Fractional Error (FE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (np.ma.mean(np.ma.abs(mod_arr - obs_arr) / (mod_arr + obs_arr), axis=axis)) * 2.0 * 100.0

ME(obs, mod, axis=None)

Mean Gross Error (model and obs unit)

Typical Use Cases

  • Quantifying the average magnitude of model errors, regardless of direction.
  • Used in model evaluation to summarize overall error size.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Mean gross error value(s).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) ME(obs, mod) 1.0

Source code in src/monet_stats/relative_metrics.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def ME(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Mean Gross Error (model and obs unit)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of model errors, regardless of direction.
    - Used in model evaluation to summarize overall error size.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean gross error value(s).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> ME(obs, mod)
    1.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = abs(mod - obs).mean(dim=dim)
        return _update_history(res, "Mean Gross Error (ME)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return np.mean(np.abs(mod_arr - obs_arr), axis=axis)

MNPB(obs, mod, paxis, axis=None)

Mean Normalized Peak Bias (%)

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the mean of normalized peak bias.

Returns

xarray.DataArray or numpy.ndarray or float Mean normalized peak bias (percent).

Source code in src/monet_stats/relative_metrics.py
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
def MNPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Mean Normalized Peak Bias (%)

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the mean of normalized peak bias.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean normalized peak bias (percent).
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (((mod.max(dim=pdim) - obs.max(dim=pdim)) / obs.max(dim=pdim)).mean(dim=mdim)) * 100.0
        return _update_history(res, "Mean Normalized Peak Bias (MNPB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            (np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)) / np.ma.max(obs_arr, axis=paxis)
        ).mean(axis=axis) * 100.0

MNPE(obs, mod, paxis, axis=None)

Mean Normalized Peak Error (MNPE, %)

Typical Use Cases

  • Quantifying the average error in peak values between model and observations, normalized by observed peaks.
  • Used in model evaluation for extreme events, such as air quality exceedances or meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the mean of normalized peak error.

Returns

xarray.DataArray or numpy.ndarray or float Mean normalized peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) MNPE(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def MNPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Mean Normalized Peak Error (MNPE, %)

    Typical Use Cases
    -----------------
    - Quantifying the average error in peak values between model and observations, normalized by observed peaks.
    - Used in model evaluation for extreme events, such as air quality exceedances or meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the mean of normalized peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean normalized peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> MNPE(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (abs(mod.max(dim=pdim) - obs.max(dim=pdim)) / obs.max(dim=pdim)).mean(dim=mdim) * 100.0
        return _update_history(res, "Mean Normalized Peak Error (MNPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.abs(np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)) / np.ma.max(obs_arr, axis=paxis)
        ).mean(axis=axis) * 100.0

MPE(obs, mod, axis=None)

Mean Peak Error (%)

Typical Use Cases

  • Quantifying the average error in peak values between model and observations.
  • Used in model evaluation for extreme events, such as air quality exceedances or meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the mean of peak error.

Returns

xarray.DataArray or numpy.ndarray or float Mean peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) MPE(obs, mod) 33.33333333

Source code in src/monet_stats/relative_metrics.py
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
def MPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Mean Peak Error (%)

    Typical Use Cases
    -----------------
    - Quantifying the average error in peak values between model and observations.
    - Used in model evaluation for extreme events, such as air quality exceedances
      or meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the mean of peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> MPE(obs, mod)
    33.33333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod.max(dim=dim) - obs.max(dim=dim)) / obs.max(dim=dim)).mean() * 100.0
        return _update_history(res, "Mean Peak Error (MPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.abs(np.ma.max(mod_arr, axis=axis) - np.ma.max(obs_arr, axis=axis)) / np.ma.max(obs_arr, axis=axis)
        ).mean() * 100.0

MdnE(obs, mod, axis=None)

Median Gross Error (model and obs unit)

Typical Use Cases

  • Evaluating the typical magnitude of model errors, robust to outliers.
  • Used in model evaluation when error distributions are skewed or non-normal.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Median gross error value(s).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) MdnE(obs, mod) 1.0

Source code in src/monet_stats/relative_metrics.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def MdnE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Median Gross Error (model and obs unit)

    Typical Use Cases
    -----------------
    - Evaluating the typical magnitude of model errors, robust to outliers.
    - Used in model evaluation when error distributions are skewed or non-normal.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Median gross error value(s).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> MdnE(obs, mod)
    1.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = abs(mod - obs).median(dim=dim)
        return _update_history(res, "Median Gross Error (MdnE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return np.ma.median(np.ma.abs(mod_arr - obs_arr), axis=axis)

MdnNPB(obs, mod, paxis, axis=None)

Median Normalized Peak Bias (%)

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak bias.

Returns

xarray.DataArray or numpy.ndarray or float Median normalized peak bias (percent).

Source code in src/monet_stats/relative_metrics.py
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
def MdnNPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Median Normalized Peak Bias (%)

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak bias.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Median normalized peak bias (percent).
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = ((mod.max(dim=pdim) - obs.max(dim=pdim)) / obs.max(dim=pdim)).median(dim=mdim) * 100.0
        return _update_history(res, "Median Normalized Peak Bias (MdnNPB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.median(
                ((np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)) / np.ma.max(obs_arr, axis=paxis)),
                axis=axis,
            )
            * 100.0
        )

MdnNPE(obs, mod, paxis, axis=None)

Median Normalized Peak Error (MdnNPE, %)

Typical Use Cases

  • Evaluating the typical error in peak values between model and observations, normalized by observed peaks, robust to outliers.
  • Used in robust model evaluation for extreme events, such as air quality exceedances or meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak error.

Returns

xarray.DataArray or numpy.ndarray or float Median normalized peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) MdnNPE(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
def MdnNPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Median Normalized Peak Error (MdnNPE, %)

    Typical Use Cases
    -----------------
    - Evaluating the typical error in peak values between model and observations,
      normalized by observed peaks, robust to outliers.
    - Used in robust model evaluation for extreme events, such as air quality exceedances
      or meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Median normalized peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> MdnNPE(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (abs(mod.max(dim=pdim) - obs.max(dim=pdim)) / obs.max(dim=pdim)).median(dim=mdim) * 100.0
        return _update_history(res, "Median Normalized Peak Error (MdnNPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.median(
                (
                    np.ma.abs(np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis))
                    / np.ma.max(obs_arr, axis=paxis)
                ),
                axis=axis,
            )
            * 100.0
        )

MdnPE(obs, mod, axis=None)

Median Peak Error (%)

Typical Use Cases

  • Evaluating the typical error in peak values between model and observations, robust to outliers.
  • Used in robust model evaluation for extreme events, such as air quality exceedances or meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the median of peak error.

Returns

xarray.DataArray or numpy.ndarray or float Median peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) MdnPE(obs, mod) 33.333333333

Source code in src/monet_stats/relative_metrics.py
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
def MdnPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Median Peak Error (%)

    Typical Use Cases
    -----------------
    - Evaluating the typical error in peak values between model and observations,
      robust to outliers.
    - Used in robust model evaluation for extreme events, such as air quality
      exceedances or meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Median peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> MdnPE(obs, mod)
    33.333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod.max(dim=dim) - obs.max(dim=dim)) / obs.max(dim=dim)).median() * 100.0
        return _update_history(res, "Median Peak Error (MdnPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.median(
                (
                    np.ma.abs(np.ma.max(mod_arr, axis=axis) - np.ma.max(obs_arr, axis=axis))
                    / np.ma.max(obs_arr, axis=axis)
                ),
                axis=axis,
            )
            * 100.0
        )

NMB(obs, mod, axis=None)

Normalized Mean Bias (%)

Typical Use Cases

  • Comparing model bias across variables or datasets with different units or scales.
  • Common in regulatory and operational air quality model performance reports.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean bias (percent).

Examples

import numpy as np obs = np.array([1, 2, 3]) mod = np.array([1.1, 2.2, 3.3]) NMB(obs, mod) 10.0

Source code in src/monet_stats/relative_metrics.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def NMB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Bias (%)

    Typical Use Cases
    -----------------
    - Comparing model bias across variables or datasets with different units or scales.
    - Common in regulatory and operational air quality model performance reports.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([1.1, 2.2, 3.3])
    >>> NMB(obs, mod)
    10.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Ensure we use dimension name if axis is int
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (mod - obs).sum(dim=dim) / obs.sum(dim=dim) * 100.0
        return _update_history(res, "Normalized Mean Bias (NMB)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return (mod_arr - obs_arr).sum(axis=axis) / obs_arr.sum(axis=axis) * 100.0

NMB_ABS(obs, mod, axis=None)

Normalized Mean Bias - Absolute of the denominator (%)

Typical Use Cases

  • Quantifying normalized mean bias when the denominator (sum of observations) may be negative or zero.
  • Used for robust model evaluation in cases with possible sign changes in the observed data sum.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean bias with absolute denominator (percent).

Source code in src/monet_stats/relative_metrics.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def NMB_ABS(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Bias - Absolute of the denominator (%)

    Typical Use Cases
    -----------------
    - Quantifying normalized mean bias when the denominator (sum of observations) may be negative or zero.
    - Used for robust model evaluation in cases with possible sign changes in the observed data sum.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean bias with absolute denominator (percent).
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (mod - obs).sum(dim=dim) / abs(obs.sum(dim=dim)) * 100.0
        return _update_history(res, "Normalized Mean Bias Absolute (NMB_ABS)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return (mod_arr - obs_arr).sum(axis=axis) / np.abs(obs_arr.sum(axis=axis)) * 100.0

NME(obs, mod, axis=None)

Normalized Mean Error (%)

Typical Use Cases

  • Quantifying the average magnitude of model errors relative to observations.
  • Used for model evaluation and comparison across variables or datasets with different scales.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean error (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NME(obs, mod) 37.5

Source code in src/monet_stats/relative_metrics.py
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def NME(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Error (%)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of model errors relative to observations.
    - Used for model evaluation and comparison across variables or datasets with different scales.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> NME(obs, mod)
    37.5
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod - obs).sum(dim=dim) / obs.sum(dim=dim)) * 100
        return _update_history(res, "Normalized Mean Error (NME)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (np.ma.abs(mod_arr - obs_arr).sum(axis=axis) / obs_arr.sum(axis=axis)) * 100

NME_m(obs, mod, axis=None)

Normalized Mean Error (%) (avoid single block error in np.ma)

Typical Use Cases

  • Quantifying the average magnitude of model errors relative to observations, robust to masked arrays.
  • Used for model evaluation when data may contain masked or missing values.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean error (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NME_m(obs, mod) 37.5

Source code in src/monet_stats/relative_metrics.py
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
def NME_m(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Error (%) (avoid single block error in np.ma)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of model errors relative to observations, robust to masked arrays.
    - Used for model evaluation when data may contain masked or missing values.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> NME_m(obs, mod)
    37.5
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod - obs).sum(dim=dim) / obs.sum(dim=dim)) * 100
        return _update_history(res, "Normalized Mean Error (NME_m)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return (np.abs(mod_arr - obs_arr).sum(axis=axis) / obs_arr.sum(axis=axis)) * 100

NME_m_ABS(obs, mod, axis=None)

Normalized Mean Error (%) - Absolute of the denominator (avoid single block error in np.ma)

Typical Use Cases

  • Quantifying normalized mean error when the denominator (sum of observations) may be negative or zero, robust to masked arrays.
  • Used for model evaluation with possible sign changes or missing values in observed data.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean error with absolute denominator (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NME_m_ABS(obs, mod) 37.5

Source code in src/monet_stats/relative_metrics.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def NME_m_ABS(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Error (%) - Absolute of the denominator
    (avoid single block error in np.ma)

    Typical Use Cases
    -----------------
    - Quantifying normalized mean error when the denominator (sum of observations)
      may be negative or zero, robust to masked arrays.
    - Used for model evaluation with possible sign changes or missing values in observed data.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean error with absolute denominator (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> NME_m_ABS(obs, mod)
    37.5
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod - obs).sum(dim=dim) / abs(obs.sum(dim=dim))) * 100
        return _update_history(res, "Normalized Mean Error Absolute (NME_m_ABS)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return (np.abs(mod_arr - obs_arr).sum(axis=axis) / np.abs(obs_arr.sum(axis=axis))) * 100

NMPB(obs, mod, paxis, axis=None)

Normalized Mean Peak Bias (NMPB, %)

Typical Use Cases

  • Quantifying the average bias in peak values, normalized by the mean of observed peaks.
  • Used in model evaluation for extreme events, especially when comparing across sites or time periods.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the mean of normalized peak bias.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean peak bias (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) NMPB(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
def NMPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Peak Bias (NMPB, %)

    Typical Use Cases
    -----------------
    - Quantifying the average bias in peak values, normalized by the mean of observed peaks.
    - Used in model evaluation for extreme events, especially when comparing across sites or time periods.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the mean of normalized peak bias.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean peak bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> NMPB(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = ((mod.max(dim=pdim) - obs.max(dim=pdim)).mean(dim=mdim) / obs.max(dim=pdim).mean(dim=mdim)) * 100.0
        return _update_history(res, "Normalized Mean Peak Bias (NMPB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            (np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)).mean(axis=axis)
            / np.ma.max(obs_arr, axis=paxis).mean(axis=axis)
        ) * 100.0

NMPE(obs, mod, paxis, axis=None)

Normalized Mean Peak Error (NMPE, %)

Typical Use Cases

  • Quantifying the average error in peak values, normalized by the mean of observed peaks.
  • Used in model evaluation for extreme events, especially when comparing across sites or time periods.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the mean of normalized peak error.

Returns

xarray.DataArray or numpy.ndarray or float Normalized mean peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) NMPE(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
def NMPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Mean Peak Error (NMPE, %)

    Typical Use Cases
    -----------------
    - Quantifying the average error in peak values, normalized by the mean of observed peaks.
    - Used in model evaluation for extreme events, especially when comparing across sites or time periods.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the mean of normalized peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized mean peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> NMPE(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (abs(mod.max(dim=pdim) - obs.max(dim=pdim)).mean(dim=mdim) / obs.max(dim=pdim).mean(dim=mdim)) * 100.0
        return _update_history(res, "Normalized Mean Peak Error (NMPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.abs(np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)).mean(axis=axis)
            / np.ma.max(obs_arr, axis=paxis).mean(axis=axis)
        ) * 100.0

NMdnB(obs, mod, axis=None)

Normalized Median Bias (%)

Typical Use Cases

  • Assessing the central tendency of normalized bias, robust to outliers and non-normal distributions.
  • Used for robust model evaluation across variables or sites with different scales.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median bias (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4, 100]) # 100 is an outlier mod = np.array([1.1, 2.2, 3.3, 4.4, 105]) NMdnB(obs, mod) 10.0

Source code in src/monet_stats/relative_metrics.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def NMdnB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Median Bias (%)

    Typical Use Cases
    -----------------
    - Assessing the central tendency of normalized bias, robust to outliers and non-normal distributions.
    - Used for robust model evaluation across variables or sites with different scales.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4, 100])  # 100 is an outlier
    >>> mod = np.array([1.1, 2.2, 3.3, 4.4, 105])
    >>> NMdnB(obs, mod)
    10.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (mod - obs).median(dim=dim) / obs.median(dim=dim) * 100.0
        return _update_history(res, "Normalized Median Bias (NMdnB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return np.ma.median(mod_arr - obs_arr, axis=axis) / np.ma.median(obs_arr, axis=axis) * 100.0

NMdnE(obs, mod, axis=None)

Normalized Median Error (%)

Typical Use Cases

  • Evaluating the typical magnitude of model errors relative to observations, robust to outliers.
  • Used for robust model evaluation and comparison across variables or datasets with different scales.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median error (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NMdnE(obs, mod) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
def NMdnE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Median Error (%)

    Typical Use Cases
    -----------------
    - Evaluating the typical magnitude of model errors relative to observations, robust to outliers.
    - Used for robust model evaluation and comparison across variables or datasets with different scales.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> NMdnE(obs, mod)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = abs(mod - obs).median(dim=dim) / obs.median(dim=dim) * 100
        return _update_history(res, "Normalized Median Error (NMdnE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return np.ma.median(np.ma.abs(mod_arr - obs_arr), axis=axis) / np.ma.median(obs_arr, axis=axis) * 100

NMdnPB(obs, mod, paxis, axis=None)

Normalized Median Peak Bias (NMdnPB, %)

Typical Use Cases

  • Evaluating the typical bias in peak values, normalized by the median of observed peaks, robust to outliers.
  • Used in robust model evaluation for extreme events, especially when comparing across sites or time periods.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak bias.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median peak bias (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) NMdnPB(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
def NMdnPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Median Peak Bias (NMdnPB, %)

    Typical Use Cases
    -----------------
    - Evaluating the typical bias in peak values, normalized by the median of observed peaks, robust to outliers.
    - Used in robust model evaluation for extreme events, especially when comparing across sites or time periods.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak bias.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median peak bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> NMdnPB(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (mod.max(dim=pdim) - obs.max(dim=pdim)).median(dim=mdim) / obs.max(dim=pdim).median(dim=mdim) * 100.0
        return _update_history(res, "Normalized Median Peak Bias (NMdnPB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.median(np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis), axis=axis)
            / np.ma.median(np.ma.max(obs_arr, axis=paxis), axis=axis)
        ) * 100.0

NMdnPE(obs, mod, paxis, axis=None)

Normalized Median Peak Error (NMdnPE, %)

Typical Use Cases

  • Evaluating the typical error in peak values, normalized by the median of observed peaks, robust to outliers.
  • Used in robust model evaluation for extreme events, especially when comparing across sites or time periods.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. paxis : int or str Axis or dimension along which to compute the peak (e.g., time or space). axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak error.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) NMdnPE(obs, mod, paxis=1) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
def NMdnPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    paxis: Union[int, str],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Normalized Median Peak Error (NMdnPE, %)

    Typical Use Cases
    -----------------
    - Evaluating the typical error in peak values, normalized by the median of observed peaks, robust to outliers.
    - Used in robust model evaluation for extreme events, especially when comparing across sites or time periods.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    paxis : int or str
        Axis or dimension along which to compute the peak (e.g., time or space).
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> NMdnPE(obs, mod, paxis=1)
    33.33333333333333
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        pdim = paxis
        if isinstance(paxis, int):
            pdim = obs.dims[paxis]
        mdim = axis
        if isinstance(axis, int):
            mdim = obs.dims[axis]
        res = (abs(mod.max(dim=pdim) - obs.max(dim=pdim))).median(dim=mdim) / obs.max(dim=pdim).median(dim=mdim) * 100.0
        return _update_history(res, "Normalized Median Peak Error (NMdnPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.median(
                np.ma.abs(np.ma.max(mod_arr, axis=paxis) - np.ma.max(obs_arr, axis=paxis)),
                axis=axis,
            )
            / np.ma.median(np.ma.max(obs_arr, axis=paxis), axis=axis)
        ) * 100.0

PSUTMNPB(obs, mod, axis=None)

Paired Space/Unpaired Time Mean Normalized Peak Bias (PSUTMNPB, %)

Wrapper for MNPB with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
def PSUTMNPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Mean Normalized Peak Bias (PSUTMNPB, %)

    Wrapper for MNPB with paxis=0, axis=None.
    """
    return MNPB(obs, mod, paxis=0, axis=None)

PSUTMNPE(obs, mod, axis=None)

Paired Space/Unpaired Time Mean Normalized Peak Error (PSUTMNPE, %)

Wrapper for MNPE with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
def PSUTMNPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Mean Normalized Peak Error (PSUTMNPE, %)

    Wrapper for MNPE with paxis=0, axis=None.
    """
    return MNPE(obs, mod, paxis=0, axis=None)

PSUTMdnNPB(obs, mod, axis=None)

Paired Space/Unpaired Time Median Normalized Peak Bias (PSUTMdnNPB, %)

Wrapper for MdnNPB with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
def PSUTMdnNPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Median Normalized Peak Bias (PSUTMdnNPB, %)

    Wrapper for MdnNPB with paxis=0, axis=None.
    """
    return MdnNPB(obs, mod, paxis=0, axis=None)

PSUTMdnNPE(obs, mod, axis=None)

Paired Space/Unpaired Time Median Normalized Peak Error (PSUTMdnNPE, %)

Wrapper for MdnNPE with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
def PSUTMdnNPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Median Normalized Peak Error (PSUTMdnNPE, %)

    Wrapper for MdnNPE with paxis=0, axis=None.
    """
    return MdnNPE(obs, mod, paxis=0, axis=None)

PSUTNMPB(obs, mod, axis=None)

Paired Space/Unpaired Time Normalized Mean Peak Bias (PSUTNMPB, %)

Wrapper for NMPB with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
def PSUTNMPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Normalized Mean Peak Bias (PSUTNMPB, %)

    Wrapper for NMPB with paxis=0, axis=None.
    """
    return NMPB(obs, mod, paxis=0, axis=None)

PSUTNMPE(obs, mod, axis=None)

Paired Space/Unpaired Time Normalized Mean Peak Error (PSUTNMPE, %)

Wrapper for NMPE with paxis=0, axis=None.

Source code in src/monet_stats/relative_metrics.py
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
def PSUTNMPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Normalized Mean Peak Error (PSUTNMPE, %)

    Wrapper for NMPE with paxis=0, axis=None.
    """
    return NMPE(obs, mod, paxis=0, axis=None)

PSUTNMdnPB(obs, mod, axis=None)

Paired Space/Unpaired Time Normalized Median Peak Bias (PSUTNMdnPB, %)

Typical Use Cases

  • Evaluating the normalized median peak bias for spatially paired, temporally unpaired datasets, robust to outliers.
  • Used in robust model evaluation for spatial ensemble or multi-time analysis.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak bias.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median peak bias (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) PSUTNMdnPB(obs, mod) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
def PSUTNMdnPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Normalized Median Peak Bias (PSUTNMdnPB, %)

    Typical Use Cases
    -----------------
    - Evaluating the normalized median peak bias for spatially paired, temporally unpaired datasets, robust to outliers.
    - Used in robust model evaluation for spatial ensemble or multi-time analysis.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak bias.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median peak bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> PSUTNMdnPB(obs, mod)
    33.33333333333333
    """
    return NMdnPB(obs, mod, paxis=0, axis=None)

PSUTNMdnPE(obs, mod, axis=None)

Paired Space/Unpaired Time Normalized Median Peak Error (PSUTNMdnPE, %)

Typical Use Cases

  • Evaluating the normalized median peak error for spatially paired, temporally unpaired datasets, robust to outliers.
  • Used in robust model evaluation for spatial ensemble or multi-time analysis.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the median of normalized peak error.

Returns

xarray.DataArray or numpy.ndarray or float Normalized median peak error (percent).

Examples

import numpy as np obs = np.array([[1, 2, 3], [2, 3, 4]]) mod = np.array([[2, 2, 2], [2, 2, 5]]) PSUTNMdnPE(obs, mod) 33.33333333333333

Source code in src/monet_stats/relative_metrics.py
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
def PSUTNMdnPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Paired Space/Unpaired Time Normalized Median Peak Error (PSUTNMdnPE, %)

    Typical Use Cases
    -----------------
    - Evaluating the normalized median peak error for spatially paired, temporally unpaired
      datasets, robust to outliers.
    - Used in robust model evaluation for spatial ensemble or multi-time analysis.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the median of normalized peak error.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Normalized median peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([[1, 2, 3], [2, 3, 4]])
    >>> mod = np.array([[2, 2, 2], [2, 2, 5]])
    >>> PSUTNMdnPE(obs, mod)
    33.33333333333333
    """
    return NMdnPE(obs, mod, paxis=0, axis=None)

USUTPB(obs, mod, axis=None)

Unpaired Space/Unpaired Time Peak Bias (%)

Typical Use Cases

  • Assessing the bias in peak values between model and observations, regardless of spatial or temporal pairing.
  • Used in event-based or extreme value model evaluation, especially for air quality and meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Peak bias (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 5]) USUTPB(obs, mod) 25.0

Source code in src/monet_stats/relative_metrics.py
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
def USUTPB(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Unpaired Space/Unpaired Time Peak Bias (%)

    Typical Use Cases
    -----------------
    - Assessing the bias in peak values between model and observations, regardless of spatial or temporal pairing.
    - Used in event-based or extreme value model evaluation, especially for air quality and meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Peak bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 5])
    >>> USUTPB(obs, mod)
    25.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = ((mod.max(dim=dim) - obs.max(dim=dim)) / obs.max(dim=dim)) * 100.0
        return _update_history(res, "Unpaired Space/Unpaired Time Peak Bias (USUTPB)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return ((np.ma.max(mod_arr, axis=axis) - np.ma.max(obs_arr, axis=axis)) / np.ma.max(obs_arr, axis=axis)) * 100.0

USUTPE(obs, mod, axis=None)

Unpaired Space/Unpaired Time Peak Error (%)

Typical Use Cases

  • Quantifying the error in peak values between model and observations, regardless of spatial or temporal pairing.
  • Used in event-based or extreme value model evaluation, especially for air quality and meteorological extremes.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed values. mod : xarray.DataArray or numpy.ndarray Model predicted values. axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Peak error (percent).

Examples

import numpy as np obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 5]) USUTPE(obs, mod) 25.0

Source code in src/monet_stats/relative_metrics.py
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
def USUTPE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Unpaired Space/Unpaired Time Peak Error (%)

    Typical Use Cases
    -----------------
    - Quantifying the error in peak values between model and observations, regardless of spatial or temporal pairing.
    - Used in event-based or extreme value model evaluation, especially for air quality and meteorological extremes.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed values.
    mod : xarray.DataArray or numpy.ndarray
        Model predicted values.
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Peak error (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 5])
    >>> USUTPE(obs, mod)
    25.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = (abs(mod.max(dim=dim) - obs.max(dim=dim)) / obs.max(dim=dim)) * 100.0
        return _update_history(res, "Unpaired Space/Unpaired Time Peak Error (USUTPE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return (
            np.ma.abs(np.ma.max(mod_arr, axis=axis) - np.ma.max(obs_arr, axis=axis)) / np.ma.max(obs_arr, axis=axis)
        ) * 100.0

WDME(obs, mod, axis=None)

Wind Direction Mean Gross Error (model and obs unit)

Typical Use Cases

  • Quantifying the average magnitude of wind direction errors, regardless of direction.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed wind direction values (degrees). mod : xarray.DataArray or numpy.ndarray Model predicted wind direction values (degrees). axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Mean gross error in wind direction (degrees).

Examples

import numpy as np obs = np.array([350, 10, 20]) mod = np.array([10, 20, 30]) WDME(obs, mod) 20.0

Source code in src/monet_stats/relative_metrics.py
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def WDME(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Wind Direction Mean Gross Error (model and obs unit)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of wind direction errors, regardless of direction.
    - Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed wind direction values (degrees).
    mod : xarray.DataArray or numpy.ndarray
        Model predicted wind direction values (degrees).
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean gross error in wind direction (degrees).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([10, 20, 30])
    >>> WDME(obs, mod)
    20.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = abs(circlebias(mod - obs)).mean(dim=dim)
        return _update_history(res, "Wind Direction Mean Gross Error (WDME)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        return np.ma.mean(np.ma.abs(circlebias(mod_arr - obs_arr)), axis=axis)

WDME_m(obs, mod, axis=None)

Wind Direction Mean Gross Error (model and obs unit) (avoid single block error in np.ma)

Typical Use Cases

  • Quantifying the average magnitude of wind direction errors, regardless of direction.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed wind direction values (degrees). mod : xarray.DataArray or numpy.ndarray Model predicted wind direction values (degrees). axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Mean gross error in wind direction (degrees).

Examples

import numpy as np obs = np.array([350, 10, 20]) mod = np.array([10, 20, 30]) WDME_m(obs, mod) 20.0

Source code in src/monet_stats/relative_metrics.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def WDME_m(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Wind Direction Mean Gross Error (model and obs unit)
    (avoid single block error in np.ma)

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of wind direction errors, regardless of direction.
    - Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed wind direction values (degrees).
    mod : xarray.DataArray or numpy.ndarray
        Model predicted wind direction values (degrees).
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Mean gross error in wind direction (degrees).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([10, 20, 30])
    >>> WDME_m(obs, mod)
    20.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        res = abs(circlebias_m(mod - obs)).mean(dim=dim)
        return _update_history(res, "Wind Direction Mean Gross Error (WDME_m)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        return np.abs(circlebias_m(mod_arr - obs_arr)).mean(axis=axis)

WDMdnE(obs, mod, axis=None)

Wind Direction Median Gross Error (model and obs unit)

Typical Use Cases

  • Evaluating the typical magnitude of wind direction errors, robust to outliers.
  • Used in wind energy and meteorological applications for robust wind direction model evaluation.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed wind direction values (degrees). mod : xarray.DataArray or numpy.ndarray Model predicted wind direction values (degrees). axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Median gross error in wind direction (degrees).

Examples

import numpy as np obs = np.array([350, 10, 20]) mod = np.array([10, 20, 30]) WDMdnE(obs, mod) 10.0

Source code in src/monet_stats/relative_metrics.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
def WDMdnE(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Wind Direction Median Gross Error (model and obs unit)

    Typical Use Cases
    -----------------
    - Evaluating the typical magnitude of wind direction errors, robust to outliers.
    - Used in wind energy and meteorological applications for robust wind direction model evaluation.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed wind direction values (degrees).
    mod : xarray.DataArray or numpy.ndarray
        Model predicted wind direction values (degrees).
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Median gross error in wind direction (degrees).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([10, 20, 30])
    >>> WDMdnE(obs, mod)
    10.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        cb = circlebias(mod - obs)
        res = abs(cb).median(dim=dim)
        return _update_history(res, "Wind Direction Median Gross Error (WDMdnE)")
    else:
        obs_arr = np.ma.asanyarray(obs)
        mod_arr = np.ma.asanyarray(mod)
        cb = circlebias(mod_arr - obs_arr)
        return np.ma.median(np.ma.abs(cb), axis=axis)

WDNMB_m(obs, mod, axis=None)

Wind Direction Normalized Mean Bias (%) (avoid single block error in np.ma)

Typical Use Cases

  • Comparing the average wind direction bias, normalized by observed wind direction, across sites or time periods.
  • Used in wind energy and meteorological model evaluation for directionally normalized performance.

Parameters

obs : xarray.DataArray or numpy.ndarray Observed wind direction values (degrees). mod : xarray.DataArray or numpy.ndarray Model predicted wind direction values (degrees). axis : int or str or None, optional Axis or dimension along which to compute the statistic.

Returns

xarray.DataArray or numpy.ndarray or float Wind direction normalized mean bias (percent).

Examples

import numpy as np obs = np.array([350, 10, 20]) mod = np.array([345, 15, 25]) WDNMB_m(obs, mod) -5.0

Source code in src/monet_stats/relative_metrics.py
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def WDNMB_m(
    obs: Union[xr.DataArray, np.ndarray],
    mod: Union[xr.DataArray, np.ndarray],
    axis: Optional[Union[int, str]] = None,
) -> Union[xr.DataArray, np.ndarray, float]:
    """
    Wind Direction Normalized Mean Bias (%) (avoid single block error in np.ma)

    Typical Use Cases
    -----------------
    - Comparing the average wind direction bias, normalized by observed wind direction, across sites or time periods.
    - Used in wind energy and meteorological model evaluation for directionally normalized performance.

    Parameters
    ----------
    obs : xarray.DataArray or numpy.ndarray
        Observed wind direction values (degrees).
    mod : xarray.DataArray or numpy.ndarray
        Model predicted wind direction values (degrees).
    axis : int or str or None, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    xarray.DataArray or numpy.ndarray or float
        Wind direction normalized mean bias (percent).

    Examples
    --------
    >>> import numpy as np
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([345, 15, 25])
    >>> WDNMB_m(obs, mod)
    -5.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        dim = axis
        if isinstance(axis, int):
            dim = obs.dims[axis]
        diff = mod - obs
        cb = circlebias_m(diff)
        res = cb.sum(dim=dim) / obs.sum(dim=dim) * 100.0
        return _update_history(res, "Wind Direction Normalized Mean Bias (WDNMB_m)")
    else:
        obs_arr = np.asanyarray(obs)
        mod_arr = np.asanyarray(mod)
        diff = mod_arr - obs_arr
        return circlebias_m(diff).sum(axis=axis) / obs_arr.sum(axis=axis) * 100.0