Interfaces
This module defines the core interfaces, base classes, and validation framework for the statistical functions in the Monet Stats package.
Core interfaces and base classes for the Monet Stats package (Aero Protocol Compliant).
This module defines the core interfaces, base classes, and validation framework for the statistical functions in the Monet Stats package.
BaseStatisticalMetric
Bases: StatisticalMetric
Base implementation for statistical metrics with common functionality.
Source code in src/monet_stats/interfaces.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | |
validate_inputs(obs, mod, **kwargs)
Validate input parameters for the metric (Aero Protocol: Lazy-friendly).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. **kwargs : Any Additional parameters specific to the metric.
Returns
bool True if inputs are valid.
Raises
TypeError If inputs are not numpy arrays or xarray DataArrays. ValueError If shapes mismatch or no finite values are present.
Source code in src/monet_stats/interfaces.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |
DataProcessor
Data processing utilities (Legacy wrapper for data_processing module).
Source code in src/monet_stats/interfaces.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | |
align_arrays(obs, mod)
staticmethod
Align two arrays for comparison.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values.
Returns
tuple Aligned obs and mod arrays.
Source code in src/monet_stats/interfaces.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | |
handle_missing_values(obs, mod, strategy='pairwise')
staticmethod
Handle missing values in arrays.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. strategy : str, optional Strategy for handling missing values ('pairwise', 'listwise').
Returns
tuple Arrays with missing values handled according to strategy.
Source code in src/monet_stats/interfaces.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | |
to_numpy(data)
staticmethod
Convert data to numpy array (Triggers compute).
Parameters
data : Any Input data.
Returns
numpy.ndarray Converted numpy array.
Source code in src/monet_stats/interfaces.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | |
PerformanceOptimizer
Performance optimization utilities (Legacy wrapper for performance module).
Source code in src/monet_stats/interfaces.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | |
chunk_array(arr, chunk_size=1000000)
staticmethod
Split array into chunks for memory-efficient processing.
Parameters
arr : numpy.ndarray Input array to chunk. chunk_size : int, optional Size of each chunk (number of elements).
Returns
list List of array chunks.
Source code in src/monet_stats/interfaces.py
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | |
vectorize_function(func, *args, **kwargs)
staticmethod
Apply function in a vectorized manner.
Parameters
func : callable Function to vectorize. args : Any Arguments to pass to function. *kwargs : Any Keyword arguments to pass to function.
Returns
Any Result of vectorized function application.
Source code in src/monet_stats/interfaces.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | |
PluginInterface
Bases: ABC
Interface for creating custom statistical metrics as plugins.
Source code in src/monet_stats/interfaces.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | |
compute(obs, mod, **kwargs)
abstractmethod
Compute the custom metric.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. **kwargs : Any Additional parameters.
Returns
float or numpy.ndarray or xarray.DataArray Computed metric value(s).
Source code in src/monet_stats/interfaces.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | |
description()
abstractmethod
Return the description of the metric.
Returns
str Metric description.
Source code in src/monet_stats/interfaces.py
413 414 415 416 417 418 419 420 421 422 | |
name()
abstractmethod
Return the name of the metric.
Returns
str Metric name.
Source code in src/monet_stats/interfaces.py
377 378 379 380 381 382 383 384 385 386 | |
validate_inputs(obs, mod, **kwargs)
abstractmethod
Validate inputs for the metric.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. **kwargs : Any Additional parameters.
Returns
bool True if inputs are valid, False otherwise.
Source code in src/monet_stats/interfaces.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | |
StatisticalMetric
Bases: ABC
Abstract base class for all statistical metrics.
This class defines the common interface for all statistical metrics in the Monet Stats package, ensuring consistency across different types of metrics (error, correlation, efficiency, etc.).
Source code in src/monet_stats/interfaces.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
compute(obs, mod, **kwargs)
abstractmethod
Compute the statistical metric.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. **kwargs : Any Additional parameters specific to the metric.
Returns
float or numpy.ndarray or xarray.DataArray The computed metric value(s).
Source code in src/monet_stats/interfaces.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | |
validate_inputs(obs, mod, **kwargs)
abstractmethod
Validate input parameters for the metric.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. **kwargs : Any Additional parameters specific to the metric.
Returns
bool True if inputs are valid, False otherwise.
Source code in src/monet_stats/interfaces.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |