Error Metrics
Error analysis and bias quantification for model evaluation.
Error Metrics for Model Evaluation
COE(obs, mod, axis=None)
Center of Mass Error (COE).
The COE measures the displacement between the centroids (centers of mass) of two fields. For spatial data, this represents the shift in the center of a feature (e.g., a storm or a pollutant plume).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values (typically 2D spatial field). mod : numpy.ndarray or xarray.DataArray Model or predicted values (typically 2D spatial field). axis : int, str, or iterable of such, optional Axis or dimension(s) over which to compute the centroid. If None, computes over all axes.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Center of mass error (Euclidean distance between centroids).
Examples
import numpy as np from monet_stats.error_metrics import COE obs = np.zeros((5, 5)) obs[2, 2] = 1.0 # Peak at center (2, 2) mod = np.zeros((5, 5)) mod[3, 3] = 1.0 # Peak shifted to (3, 3)
Displacement is sqrt(1^2 + 1^2) = sqrt(2) approx 1.414
np.allclose(COE(obs, mod), np.sqrt(2)) True
Source code in src/monet_stats/error_metrics.py
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 | |
CORR_INDEX(obs, mod, axis=None)
Correlation Index (CORR_INDEX).
Typical Use Cases
- Measuring the linear relationship between observed and modeled values.
- Used as a component in model evaluation.
- Quantifies how well model captures observed patterns.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute correlation index.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Correlation index (unitless, -1 to 1).
Examples
import numpy as np from monet_stats.error_metrics import CORR_INDEX obs = np.array([1, 2, 3, 4]) mod = np.array([2, 4, 6, 8]) CORR_INDEX(obs, mod) 1.0
Source code in src/monet_stats/error_metrics.py
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 | |
CRMSE(obs, mod, axis=None)
Centered Root Mean Square Error (CRMSE).
Typical Use Cases
- Quantifying the error between anomalies (deviations from mean) of model and observations.
- Used in Taylor diagrams, model evaluation, and forecast verification.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute CRMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Centered root mean square error.
Examples
import numpy as np from monet_stats.error_metrics import CRMSE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) CRMSE(obs, mod) 0.4714045207910317
Source code in src/monet_stats/error_metrics.py
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 | |
IOA(obs, mod, axis=None)
Index of Agreement (IOA).
Typical Use Cases
- Quantifying the agreement between model and observations, normalized by total deviation.
- Used in model evaluation for skill assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute IOA.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Index of agreement (unitless, 0-1).
Examples
import numpy as np from monet_stats.error_metrics import IOA obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) IOA(obs, mod) 0.8
Source code in src/monet_stats/error_metrics.py
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 | |
IOA_m(obs, mod, axis=None)
Index of Agreement (IOA) - robust to masked arrays.
Typical Use Cases
- Quantifying the agreement between model and observations, normalized by total deviation, robust to missing data.
- Used in model evaluation for skill assessment with incomplete datasets.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute IOA.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Index of agreement (unitless, 0-1).
Examples
import numpy as np from monet_stats.error_metrics import IOA_m obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) IOA_m(obs, mod) 0.8
Source code in src/monet_stats/error_metrics.py
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 | |
LOG_ERROR(obs, mod, axis=None)
Logarithmic Error Metric.
Typical Use Cases
- Quantifying errors for variables that span several orders of magnitude.
- Used in atmospheric sciences for concentration data (e.g., pollutants).
- Helpful when relative rather than absolute errors are important.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values (should be positive). mod : numpy.ndarray or xarray.DataArray Model or predicted values (should be positive). axis : int, str, or iterable of such, optional Axis or dimension along which to compute log error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Logarithmic error metric.
Examples
import numpy as np from monet_stats.error_metrics import LOG_ERROR obs = np.array([1, 100]) mod = np.array([2, 200]) LOG_ERROR(obs, mod) 0.34657359027997264
Source code in src/monet_stats/error_metrics.py
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 | |
MAE(obs, mod, axis=None)
Mean Absolute Error (MAE).
Typical Use Cases
- Quantifying the average magnitude of errors between model and observations, regardless of direction.
- Used in model evaluation, forecast verification, and regression analysis.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MAE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute error.
Examples
import numpy as np from monet_stats.error_metrics import MAE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MAE(obs, mod) 0.6666666666666666
Source code in src/monet_stats/error_metrics.py
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 | |
MAE_m(obs, mod, axis=None)
Mean Absolute Error (MAE) - robust to masked arrays.
Typical Use Cases
- Quantifying the average magnitude of errors between model and observations, regardless of direction, robust to missing data.
- Used in model evaluation, forecast verification, and regression analysis with incomplete datasets.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MAE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute error.
Examples
import numpy as np from monet_stats.error_metrics import MAE_m obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MAE_m(obs, mod) 0.6666666666666666
Source code in src/monet_stats/error_metrics.py
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 | |
MAE_norm(obs, mod, axis=None)
Normalized Mean Absolute Error (MAE_norm).
Normalizes MAE by the range of observations.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute normalized MAE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Normalized mean absolute error (unitless).
Source code in src/monet_stats/error_metrics.py
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 | |
MAPE(obs, mod, axis=None)
Mean Absolute Percentage Error (MAPE).
Typical Use Cases
- Quantifying the average relative error between model and observations as a percentage.
- Used in time series forecasting, regression, and model evaluation for percentage-based error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MAPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute percentage error (in percent).
Examples
import numpy as np from monet_stats.error_metrics import MAPE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MAPE(obs, mod) 50.0
Source code in src/monet_stats/error_metrics.py
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | |
MAPE_mod(obs, mod, axis=None)
Modified Mean Absolute Percentage Error (MAPE).
This version handles cases where observations might be zero or near zero by using a small epsilon to avoid division by zero.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MAPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute percentage error (in percent).
Source code in src/monet_stats/error_metrics.py
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 | |
MAPEm(obs, mod, axis=None)
Mean Absolute Percentage Error (MAPE) - robust to masked arrays.
Typical Use Cases
- Quantifying the average relative error between model and observations as a percentage, robust to missing data.
- Used in time series forecasting, regression, and model evaluation for percentage-based error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MAPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute percentage error (in percent).
Examples
import numpy as np from monet_stats.error_metrics import MAPEm obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MAPEm(obs, mod) 50.0
Source code in src/monet_stats/error_metrics.py
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | |
MASE(obs, mod, axis=None)
Mean Absolute Scaled Error (MASE).
Typical Use Cases
- Quantifying model error relative to the error of a simple baseline model (e.g., naive forecast).
- Used in time series forecasting and model evaluation.
- Provides scale-independent comparison across different datasets.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MASE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute scaled error (unitless).
Examples
import numpy as np from monet_stats.error_metrics import MASE obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 3.1, 4.1]) MASE(obs, mod) 0.1
Source code in src/monet_stats/error_metrics.py
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 | |
MASE_mod(obs, mod, axis=None)
Modified Mean Absolute Scaled Error (MASE).
This version handles cases where the naive forecast error is zero by using a small epsilon to avoid division by zero.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MASE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute scaled error (unitless).
Source code in src/monet_stats/error_metrics.py
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 | |
MASEm(obs, mod, axis=None)
Mean Absolute Scaled Error (MASE) - robust to masked arrays.
Typical Use Cases
- Quantifying model error relative to the error of a simple baseline model (e.g., naive forecast), robust to masked arrays.
- Used in time series forecasting and model evaluation with missing data.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MASE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean absolute scaled error (unitless).
Examples
import numpy as np from monet_stats.error_metrics import MASEm obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 3.1, 4.1]) MASEm(obs, mod) 0.1
Source code in src/monet_stats/error_metrics.py
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 | |
MB(obs, mod, axis=None)
Mean Bias (MB).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the mean bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean bias value(s) = mean(model - observation). Positive values indicate model overestimation.
Source code in src/monet_stats/error_metrics.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 | |
MNB(obs, mod, axis=None)
Mean Normalized Bias (%).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean normalized bias (percent).
Source code in src/monet_stats/error_metrics.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | |
MNE(obs, mod, axis=None)
Mean Normalized Gross Error (%).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean normalized gross error (percent).
Source code in src/monet_stats/error_metrics.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | |
MO(obs, mod, axis=None)
Mean Error (MO) - Mean of (model - observation).
Typical Use Cases
- Quantifying the average bias between model predictions and observations.
- Used in model evaluation to assess systematic errors.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the mean error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean error (model - observation) in observation units. Returns 0.0 for perfect agreement.
Examples
import numpy as np from monet_stats.error_metrics import MO obs = np.array([1, 2, 3, 4, 5]) mod = np.array([1.1, 2.1, 3.1, 4.1, 5.1]) MO(obs, mod) 0.1
Source code in src/monet_stats/error_metrics.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | |
MP(obs=None, mod=None, axis=None)
Mean Predictions (model unit).
Typical Use Cases
- Calculating the average value of model predictions for baseline or climatological reference.
- Used in normalization, anomaly calculation, and summary statistics for model output.
Parameters
obs : numpy.ndarray or xarray.DataArray, optional Observed values (not used for MP but included for signature matching). mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the mean.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean of predictions.
Source code in src/monet_stats/error_metrics.py
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 | |
MdnB(obs, mod, axis=None)
Median Bias (MdnB).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the median bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median bias value(s) = median(model - observation). Positive values indicate model overestimation.
Source code in src/monet_stats/error_metrics.py
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | |
MdnNB(obs, mod, axis=None)
Median Normalized Bias (%).
Typical Use Cases
- Assessing the central tendency of model bias relative to observations, less sensitive to outliers than mean.
- Useful for robust model evaluation in the presence of skewed or non-normal error distributions.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median normalized bias (percent).
Source code in src/monet_stats/error_metrics.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | |
MdnNE(obs, mod, axis=None)
Median Normalized Gross Error (%).
Typical Use Cases
- Evaluating the typical magnitude of model errors relative to observations, robust to outliers.
- Useful for summarizing error magnitude in non-Gaussian or heavy-tailed error distributions.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median normalized gross error (percent).
Source code in src/monet_stats/error_metrics.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | |
MdnO(obs, mod, axis=None)
Median Error (MdnO) - Median of (model - observation).
Typical Use Cases
- Quantifying the typical bias between model predictions and observations, robust to outliers.
- Used in robust model evaluation for non-parametric error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the median error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median error (model - observation) in observation units. Returns 0.0 for perfect agreement.
Examples
import numpy as np from monet_stats.error_metrics import MdnO obs = np.array([1, 2, 3, 4, 5]) mod = np.array([1.1, 2.1, 3.1, 4.1, 5.1]) MdnO(obs, mod) 0.1
Source code in src/monet_stats/error_metrics.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | |
MdnP(obs, mod, axis=None)
Median Error (MdnP) - Median of (model - observation).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the median error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median error (model - observation) in model units. Returns 0.0 for perfect agreement.
Source code in src/monet_stats/error_metrics.py
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | |
MedAE(obs, mod, axis=None)
Median Absolute Error (MedAE).
Typical Use Cases
- Evaluating the typical magnitude of errors, robust to outliers and non-normal error distributions.
- Used in robust regression, model evaluation, and forecast verification.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MedAE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median absolute error.
Examples
import numpy as np from monet_stats.error_metrics import MedAE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MedAE(obs, mod) 1.0
Source code in src/monet_stats/error_metrics.py
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | |
MedAE_m(obs, mod, axis=None)
Median Absolute Error (MedAE) - robust to masked arrays and outliers.
Typical Use Cases
- Evaluating the typical magnitude of errors, robust to outliers and non-normal error distributions with missing data.
- Used in robust regression, model evaluation, and forecast verification with incomplete datasets.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute MedAE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median absolute error.
Examples
import numpy as np from monet_stats.error_metrics import MedAE_m obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MedAE_m(obs, mod) 1.0
Source code in src/monet_stats/error_metrics.py
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 | |
NMSE(obs, mod, axis=None)
Normalized Mean Square Error (NMSE).
Typical Use Cases
- Quantifying the normalized squared error between model and observations.
- Used in model evaluation to compare performance across different variables or sites with different scales.
- Provides dimensionless error metric for cross-comparison.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute NMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Normalized mean square error (unitless).
Examples
import numpy as np from monet_stats.error_metrics import NMSE obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NMSE(obs, mod) 0.25
Source code in src/monet_stats/error_metrics.py
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 | |
NMdnGE(obs, mod, axis=None)
Normalized Median Gross Error (%).
Typical Use Cases
- Comparing the typical (median) error magnitude, normalized by the mean observation, for robust model evaluation.
- Useful for inter-comparison of model performance across sites or variables with different scales.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Normalized median gross error (percent).
Examples
import numpy as np from monet_stats.error_metrics import NMdnGE obs = np.array([1, 2, 3, 4, 100]) mod = np.array([1.1, 2.1, 3.1, 4.1, 105]) NMdnGE(obs, mod) 0.45454545454545453
Source code in src/monet_stats/error_metrics.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | |
NO(obs, mod=None, axis=None)
N Observations (#).
Typical Use Cases
- Counting the number of valid (non-masked) observations in a dataset.
- Used to report sample size for statistical summaries and model evaluation.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray, optional Model predicted values (not used for NO but included for signature matching). axis : int, str, or iterable of such, optional Axis or dimension along which to count.
Returns
int, numpy.ndarray, or xarray.DataArray Number of valid observations.
Source code in src/monet_stats/error_metrics.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | |
NOP(obs, mod, axis=None)
N Observations/Prediction Pairs (#).
Typical Use Cases
- Counting the number of valid observation-prediction pairs for paired statistical analysis.
- Used to ensure sample size consistency in paired model evaluation metrics.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to count.
Returns
int, numpy.ndarray, or xarray.DataArray Number of valid pairs.
Source code in src/monet_stats/error_metrics.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | |
NP(obs=None, mod=None, axis=None)
N Predictions (#).
Typical Use Cases
- Counting the number of valid (non-masked) model predictions in a dataset.
- Used to report sample size for model output and for filtering invalid predictions.
Parameters
obs : numpy.ndarray or xarray.DataArray, optional Observed values (not used for NP but included for signature matching). mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to count.
Returns
int, numpy.ndarray, or xarray.DataArray Number of valid predictions.
Source code in src/monet_stats/error_metrics.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 | |
NRMSE(obs, mod, axis=None)
Normalized Root Mean Square Error (NRMSE).
Typical Use Cases
- Quantifying the relative error between model and observations, normalized by the range of observations.
- Used in model evaluation to compare performance across different variables or sites with different scales.
- Provides dimensionless error metric for cross-comparison.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute NRMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Normalized root mean square error (unitless).
Examples
import numpy as np from monet_stats.error_metrics import NRMSE obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NRMSE(obs, mod) 0.4714045207910317
Source code in src/monet_stats/error_metrics.py
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 | |
NSC(obs, mod, axis=None)
Nash-Sutcliffe Coefficient (NSC) - Alternative to NSE.
Typical Use Cases
- Quantifying the predictive power of hydrological models relative to the mean of observations.
- Used in hydrology, meteorology, and environmental model evaluation.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute NSC.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Nash-Sutcliffe coefficient (unitless).
Examples
import numpy as np from monet_stats.error_metrics import NSC obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NSC(obs, mod) -0.33333333333333326
Source code in src/monet_stats/error_metrics.py
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 | |
NSE_alpha(obs, mod, axis=None)
NSE Alpha - Decomposed NSE component measuring ratio of standard deviations.
Typical Use Cases
- Quantifying the model's ability to capture the variability of observations.
- Used in model evaluation to assess how well model represents observed variability.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute NSE_alpha.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray NSE alpha component (unitless).
Examples
import numpy as np from monet_stats.error_metrics import NSE_alpha obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NSE_alpha(obs, mod) 0.0
Source code in src/monet_stats/error_metrics.py
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 | |
NSE_beta(obs, mod, axis=None)
NSE Beta - Decomposed NSE component measuring bias.
Typical Use Cases
- Quantifying the systematic bias between model and observations.
- Used in model evaluation to assess mean differences between model and observations.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute NSE_beta.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray NSE beta component (unitless).
Examples
import numpy as np from monet_stats.error_metrics import NSE_beta obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) NSE_beta(obs, mod) 0.5
Source code in src/monet_stats/error_metrics.py
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 | |
RM(obs, mod, axis=None)
Root Mean Error (RM) - Root of mean squared error.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Root of mean squared error (observation units). Returns 0.0 for perfect agreement.
Source code in src/monet_stats/error_metrics.py
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | |
RMSE(obs, mod, axis=None)
Root Mean Square Error (RMSE).
Typical Use Cases
- Quantifying the average magnitude of errors between model and observations, accounting for large errors more heavily than MAE.
- Used in model evaluation, forecast verification, and regression analysis.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute RMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Root mean square error.
Examples
import numpy as np from monet_stats.error_metrics import RMSE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) RMSE(obs, mod) 0.816496580927726
Source code in src/monet_stats/error_metrics.py
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 | |
RMSE_m(obs, mod, axis=None)
Root Mean Square Error (RMSE) - robust to masked arrays.
Typical Use Cases
- Quantifying the average magnitude of errors between model and observations, accounting for large errors more heavily than MAE, robust to missing data.
- Used in model evaluation, forecast verification, and regression analysis with incomplete datasets.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute RMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Root mean square error.
Examples
import numpy as np from monet_stats.error_metrics import RMSE_m obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) RMSE_m(obs, mod) 0.816496580927726
Source code in src/monet_stats/error_metrics.py
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 | |
RMSE_norm(obs, mod, axis=None)
Normalized Root Mean Square Error (RMSE_norm).
Normalizes RMSE by the range of observations.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute normalized RMSE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Normalized root mean square error (unitless).
Source code in src/monet_stats/error_metrics.py
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 | |
RMSPE(obs, mod, axis=None)
Root Mean Square Percentage Error (RMSPE).
Typical Use Cases
- Quantifying the average relative error between model and observations as a percentage, emphasizing larger errors.
- Used in time series forecasting, regression, and model evaluation for percentage-based error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute RMSPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Root mean square percentage error (in percent).
Examples
import numpy as np from monet_stats.error_metrics import RMSPE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) RMSPE(obs, mod) 50.0
Source code in src/monet_stats/error_metrics.py
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 | |
RMdn(obs, mod, axis=None)
Root Median Error (RMdn) - Root of median squared error.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Root of median squared error (observation units). Returns 0.0 for perfect agreement.
Source code in src/monet_stats/error_metrics.py
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | |
STDO(obs, mod, axis=None)
Standard deviation of Observation Errors (obs - mod).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the standard deviation. If None, computes over all axes.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Standard deviation of (observation - model) errors. Returns 0.0 for perfect agreement.
Examples
import numpy as np from monet_stats.error_metrics import STDO obs = np.array([1.0, 2.0, 3.0]) mod = np.array([1.1, 1.9, 3.2]) STDO(obs, mod) 0.1247219128924647
Source code in src/monet_stats/error_metrics.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | |
STDP(obs, mod, axis=None)
Standard deviation of Prediction Errors (mod - obs).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the standard deviation. If None, computes over all axes.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Standard deviation of (model - observation) errors. Returns 0.0 for perfect agreement.
Examples
import numpy as np from monet_stats.error_metrics import STDP obs = np.array([1.0, 2.0, 3.0]) mod = np.array([1.1, 1.9, 3.2]) STDP(obs, mod) 0.1247219128924647
Source code in src/monet_stats/error_metrics.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | |
VOLUMETRIC_ERROR(obs, mod, axis=None)
Volumetric Error Metric.
Typical Use Cases
- Quantifying the volume difference between observed and modeled features.
- Used in hydrology for flood extent verification.
- Applied in meteorology for precipitation volume verification.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute volumetric error.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Volumetric error metric.
Examples
import numpy as np from monet_stats.error_metrics import VOLUMETRIC_ERROR obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) VOLUMETRIC_ERROR(obs, mod) 0.2
Source code in src/monet_stats/error_metrics.py
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 | |
WDMB(obs, mod, axis=None)
Wind Direction Mean Bias (WDMB, standard version).
This version uses circlebias, which is not robust to masked arrays. Use this if your data are dense and do not contain missing values.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Model predicted wind direction values (degrees). axis : int, str, or iterable of such, optional Axis or dimension along which to compute the mean bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean wind direction bias (degrees).
Source code in src/monet_stats/error_metrics.py
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 | |
WDMB_m(obs, mod, axis=None)
Wind Direction Mean Bias (WDMB, robust version for masked arrays).
This version uses circlebias_m, which is robust to masked arrays and missing data. Use this if your data may contain NaNs or masked values.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Model predicted wind direction values (degrees). axis : int, str, or iterable of such, optional Axis or dimension along which to compute the mean bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Mean wind direction bias (degrees).
Source code in src/monet_stats/error_metrics.py
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 | |
WDMdnB(obs, mod, axis=None)
Wind Direction Median Bias (WDMdnB).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Model predicted wind direction values (degrees). axis : int, str, or iterable of such, optional Axis or dimension along which to compute the median bias.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Median wind direction bias (degrees).
Source code in src/monet_stats/error_metrics.py
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | |
bias_fraction(obs, mod, axis=None)
Bias Fraction (BF).
Quantifies the fraction of total error that is due to systematic bias.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute bias fraction.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Bias fraction (unitless, 0-1).
Source code in src/monet_stats/error_metrics.py
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 | |
sMAPE(obs, mod, axis=None)
Symmetric Mean Absolute Percentage Error (sMAPE).
Typical Use Cases
- Quantifying the average relative error between model and observations, normalized by their mean.
- Used in time series forecasting, regression, and model evaluation for percentage-based error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute sMAPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Symmetric mean absolute percentage error (in percent).
Examples
import numpy as np from monet_stats.error_metrics import sMAPE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) sMAPE(obs, mod) 28.57142857142857
Source code in src/monet_stats/error_metrics.py
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 | |
sMAPEm(obs, mod, axis=None)
Symmetric Mean Absolute Percentage Error (sMAPE) - robust to masked arrays.
Typical Use Cases
- Quantifying the average relative error between model and observations, normalized by their mean, robust to missing data.
- Used in time series forecasting, regression, and model evaluation for percentage-based error assessment.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute sMAPE.
Returns
numpy.number, numpy.ndarray, or xarray.DataArray Symmetric mean absolute percentage error (in percent).
Examples
import numpy as np from monet_stats.error_metrics import sMAPEm obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) sMAPEm(obs, mod) 28.57142857142857
Source code in src/monet_stats/error_metrics.py
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 | |