Skip to content

Efficiency Metrics

Model efficiency and performance measures for evaluating forecast skill.

Efficiency Metrics for Model Evaluation

MSE(obs, mod, axis=None)

Mean Squared Error (MSE).

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the error.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Mean squared error.

Examples

import numpy as np from monet_stats.efficiency_metrics import MSE obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) MSE(obs, mod) 0.6666666666666666

Source code in src/monet_stats/efficiency_metrics.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def MSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Mean Squared Error (MSE).

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the error.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Mean squared error.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import MSE
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> MSE(obs, mod)
    0.6666666666666666
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        result = ((mod - obs) ** 2).mean(dim=dim, keep_attrs=True)

        # Update history
        history = f"MSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        return np.nanmean((mod - obs) ** 2, axis=axis)

NSE(obs, mod, axis=None)

Nash-Sutcliffe Efficiency (NSE).

Typical Use Cases

  • Quantifying the predictive power of hydrological models relative to the mean of observations.
  • Used in hydrology, meteorology, and environmental model evaluation.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Nash-Sutcliffe efficiency (unitless).

Examples

import numpy as np from monet_stats.efficiency_metrics import NSE obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 2.9, 4.1]) NSE(obs, mod) 0.98

Source code in src/monet_stats/efficiency_metrics.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def NSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Nash-Sutcliffe Efficiency (NSE).

    Typical Use Cases
    -----------------
    - Quantifying the predictive power of hydrological models relative to the
      mean of observations.
    - Used in hydrology, meteorology, and environmental model evaluation.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Nash-Sutcliffe efficiency (unitless).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import NSE
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 2.1, 2.9, 4.1])
    >>> NSE(obs, mod)
    0.98
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_mean = obs.mean(dim=dim)
        numerator = ((obs - mod) ** 2).sum(dim=dim)
        denominator = ((obs - obs_mean) ** 2).sum(dim=dim)

        # Handle division by zero
        result = 1.0 - (numerator / denominator)
        result = xr.where((numerator == 0) & (denominator == 0), 1.0, result)
        result = xr.where((numerator != 0) & (denominator == 0), -np.inf, result)

        # Update history
        history = f"NSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
        numerator = np.nansum((obs - mod) ** 2, axis=axis)
        denominator = np.nansum((obs - obs_mean) ** 2, axis=axis)

        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (numerator / denominator)
            result = np.where((numerator == 0) & (denominator == 0), 1.0, result)
            result = np.where((numerator != 0) & (denominator == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

NSElog(obs, mod, axis=None)

Log Nash-Sutcliffe Efficiency (NSElog).

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values (positive values only). mod : numpy.ndarray or xarray.DataArray Model predicted values (positive values only). axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Log Nash-Sutcliffe efficiency (unitless).

Examples

import numpy as np from monet_stats.efficiency_metrics import NSElog obs = np.array([1, 10, 100]) mod = np.array([1.1, 9.0, 110]) NSElog(obs, mod) 0.988

Source code in src/monet_stats/efficiency_metrics.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def NSElog(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Log Nash-Sutcliffe Efficiency (NSElog).

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values (positive values only).
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values (positive values only).
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Log Nash-Sutcliffe efficiency (unitless).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import NSElog
    >>> obs = np.array([1, 10, 100])
    >>> mod = np.array([1.1, 9.0, 110])
    >>> NSElog(obs, mod)
    0.988
    """
    epsilon = 1e-6
    obs_log = np.log(obs + epsilon)
    mod_log = np.log(mod + epsilon)
    return NSE(obs_log, mod_log, axis=axis)

NSEm(obs, mod, axis=None)

Nash-Sutcliffe Efficiency (NSE) - robust to masked arrays.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Nash-Sutcliffe efficiency (unitless).

Examples

import numpy as np from monet_stats.efficiency_metrics import NSEm obs = np.array([1, 2, np.nan, 4]) mod = np.array([1.1, 2.1, 3.0, 4.1]) NSEm(obs, mod) 0.985

Source code in src/monet_stats/efficiency_metrics.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def NSEm(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Nash-Sutcliffe Efficiency (NSE) - robust to masked arrays.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Nash-Sutcliffe efficiency (unitless).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import NSEm
    >>> obs = np.array([1, 2, np.nan, 4])
    >>> mod = np.array([1.1, 2.1, 3.0, 4.1])
    >>> NSEm(obs, mod)
    0.985
    """
    # Standard NSE implementation already handles NaNs if using nan-aware functions
    return NSE(obs, mod, axis=axis)

PC(obs, mod, axis=None, tolerance=0.1)

Percent of Correct (PC).

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic. tolerance : float, optional Fraction of observed value used as tolerance (default 0.1).

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Percent of correct predictions (0-100%).

Examples

import numpy as np from monet_stats.efficiency_metrics import PC obs = np.array([1, 2, 3, 4]) mod = np.array([1.05, 2.5, 2.95, 4.05]) PC(obs, mod) 75.0

Source code in src/monet_stats/efficiency_metrics.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def PC(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
    tolerance: float = 0.1,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Percent of Correct (PC).

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.
    tolerance : float, optional
        Fraction of observed value used as tolerance (default 0.1).

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Percent of correct predictions (0-100%).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import PC
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.05, 2.5, 2.95, 4.05])
    >>> PC(obs, mod)
    75.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        tol = tolerance * np.abs(obs)
        correct = np.abs(obs - mod) <= tol
        result = (correct.sum(dim=dim) / correct.count(dim=dim)) * 100.0

        # Update history
        history = f"PC computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        tol = tolerance * np.abs(obs)
        correct = np.abs(obs - mod) <= tol
        total = np.sum(~np.isnan(correct), axis=axis)
        correct_sum = np.nansum(correct, axis=axis)
        return (correct_sum / total) * 100.0

mNSE(obs, mod, axis=None)

Modified Nash-Sutcliffe Efficiency (mNSE).

Uses absolute differences instead of squared differences.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Modified Nash-Sutcliffe efficiency (unitless).

Examples

import numpy as np from monet_stats.efficiency_metrics import mNSE obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 2.9, 4.1]) mNSE(obs, mod) 0.92

Source code in src/monet_stats/efficiency_metrics.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def mNSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Modified Nash-Sutcliffe Efficiency (mNSE).

    Uses absolute differences instead of squared differences.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Modified Nash-Sutcliffe efficiency (unitless).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import mNSE
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 2.1, 2.9, 4.1])
    >>> mNSE(obs, mod)
    0.92
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_mean = obs.mean(dim=dim)
        numerator = np.abs(obs - mod).sum(dim=dim)
        denominator = np.abs(obs - obs_mean).sum(dim=dim)

        result = 1.0 - (numerator / denominator)
        result = xr.where((numerator == 0) & (denominator == 0), 1.0, result)
        result = xr.where((numerator != 0) & (denominator == 0), -np.inf, result)

        # Update history
        history = f"mNSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
        numerator = np.nansum(np.abs(obs - mod), axis=axis)
        denominator = np.nansum(np.abs(obs - obs_mean), axis=axis)

        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (numerator / denominator)
            result = np.where((numerator == 0) & (denominator == 0), 1.0, result)
            result = np.where((numerator != 0) & (denominator == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

rNSE(obs, mod, axis=None)

Relative Nash-Sutcliffe Efficiency (rNSE).

Normalizes errors by the range of observed values.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Relative Nash-Sutcliffe efficiency (unitless).

Examples

import numpy as np from monet_stats.efficiency_metrics import rNSE obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 2.9, 4.1]) rNSE(obs, mod) 0.992

Source code in src/monet_stats/efficiency_metrics.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def rNSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Relative Nash-Sutcliffe Efficiency (rNSE).

    Normalizes errors by the range of observed values.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Relative Nash-Sutcliffe efficiency (unitless).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.efficiency_metrics import rNSE
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 2.1, 2.9, 4.1])
    >>> rNSE(obs, mod)
    0.992
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_mean = obs.mean(dim=dim)
        obs_range = obs.max(dim=dim) - obs.min(dim=dim)
        # Avoid division by zero in normalization
        obs_range_safe = xr.where(obs_range == 0, 1.0, obs_range)

        numerator = (((obs - mod) / obs_range_safe) ** 2).sum(dim=dim)
        denominator = (((obs - obs_mean) / obs_range_safe) ** 2).sum(dim=dim)

        result = 1.0 - (numerator / denominator)
        result = xr.where((numerator == 0) & (denominator == 0), 1.0, result)
        result = xr.where((numerator != 0) & (denominator == 0), -np.inf, result)

        # Update history
        history = f"rNSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
        obs_range = np.nanmax(obs, axis=axis, keepdims=True) - np.nanmin(obs, axis=axis, keepdims=True)
        obs_range_safe = np.where(obs_range == 0, 1.0, obs_range)

        with np.errstate(divide="ignore", invalid="ignore"):
            numerator = np.nansum(((obs - mod) / obs_range_safe) ** 2, axis=axis)
            denominator = np.nansum(((obs - obs_mean) / obs_range_safe) ** 2, axis=axis)
            result = 1.0 - (numerator / denominator)
            result = np.where((numerator == 0) & (denominator == 0), 1.0, result)
            result = np.where((numerator != 0) & (denominator == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result