Data Processing
Utilities for data input, output, and preprocessing.
Data processing utilities for statistical computations (Aero Protocol Compliant).
align_arrays(obs, mod)
Align two arrays for comparison.
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values.
Returns
tuple of (numpy.ndarray or xarray.DataArray) Aligned (obs, mod) arrays.
Examples
import xarray as xr obs = xr.DataArray([1, 2], coords={'x': [0, 1]}, dims='x') mod = xr.DataArray([2, 3], coords={'x': [1, 2]}, dims='x') obs_a, mod_a = align_arrays(obs, mod) obs_a.x.values array([1])
Source code in src/monet_stats/data_processing.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
compute_anomalies(obs, mod, climatology=None)
Compute anomalies relative to climatology (Lazy-friendly).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. climatology : numpy.ndarray or xarray.DataArray, optional Climatology to subtract. If None, the mean of each array is used.
Returns
tuple of (numpy.ndarray or xarray.DataArray) (obs_anom, mod_anom)
Examples
import numpy as np obs = np.array([1, 2, 3, 4, 5]) mod = np.array([1, 2, 3, 4, 5]) obs_anom, _ = compute_anomalies(obs, mod) np.isclose(np.mean(obs_anom), 0) True
Source code in src/monet_stats/data_processing.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | |
detrend_data(obs, mod, method='linear', dim=None, axis=-1)
Remove trend from data (Lazy-friendly).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. method : str, optional Detrending method ('linear', 'constant'). - 'linear': least-squares linear detrend. - 'constant': subtract mean. dim : str, optional Dimension along which to detrend (xarray only). axis : int, optional Axis along which to detrend (numpy only, or if dim is None). Default is -1.
Returns
tuple of (numpy.ndarray or xarray.DataArray) Detrended (obs, mod) arrays.
Examples
import numpy as np obs = np.array([1, 2, 3]) mod = np.array([1, 2, 3]) obs_d, mod_d = detrend_data(obs, mod, method='linear') np.allclose(obs_d, 0) True
Source code in src/monet_stats/data_processing.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | |
handle_missing_values(obs, mod, strategy='pairwise')
Handle missing values in arrays (Aero Protocol: Lazy-friendly).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. strategy : str, optional Strategy for handling missing values ('pairwise', 'listwise'). For xarray, ensures NaNs are matched across both arrays without dropping coordinates. For numpy, returns flattened arrays with NaNs removed.
Returns
tuple of (numpy.ndarray or xarray.DataArray) (obs, mod) with missing values handled.
Examples
import numpy as np obs = np.array([1, np.nan, 3]) mod = np.array([1, 2, np.nan]) handle_missing_values(obs, mod) (array([1.]), array([1.]))
Source code in src/monet_stats/data_processing.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | |
normalize_data(obs, mod, method='zscore')
Normalize data using various methods (Lazy-friendly).
Parameters
obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model/predicted values. method : str, optional Normalization method ('zscore', 'minmax', 'robust'). - 'zscore': (x - mean) / std - 'minmax': (x - min) / (max - min) - 'robust': (x - median) / MAD (Median Absolute Deviation)
Returns
tuple of (numpy.ndarray or xarray.DataArray) Normalized (obs, mod) arrays.
Examples
import xarray as xr import numpy as np obs = xr.DataArray(np.random.rand(10, 10)) mod = xr.DataArray(np.random.rand(10, 10)) obs_norm, mod_norm = normalize_data(obs, mod, method='zscore')
Source code in src/monet_stats/data_processing.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | |
to_numpy(data)
Convert data to numpy array (Eager operation).
.. warning:: This operation triggers immediate computation if the input is a Dask-backed xarray object. Use with caution in lazy pipelines.
Parameters
data : Any Input data to convert (xarray.DataArray, xarray.Dataset, pandas.Series/DataFrame, list, etc.).
Returns
numpy.ndarray Converted numpy array.
Examples
import xarray as xr da = xr.DataArray([1, 2, 3]) to_numpy(da) array([1, 2, 3])
Source code in src/monet_stats/data_processing.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | |