Skip to content

Correlation Metrics

Statistical correlation and skill score calculations for model evaluation.

Correlation and Agreement Metrics for Model Evaluation

AC(obs, mod, axis=None)

Anomaly Correlation (AC).

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Anomaly correlation coefficient (unitless, -1 to 1).

Examples

import numpy as np from monet_stats.correlation_metrics import AC obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 2.9, 4.1]) AC(obs, mod) 0.9922778767136677

Source code in src/monet_stats/correlation_metrics.py
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
def AC(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Anomaly Correlation (AC).

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Anomaly correlation coefficient (unitless, -1 to 1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import AC
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 2.1, 2.9, 4.1])
    >>> AC(obs, mod)
    0.9922778767136677
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_bar = obs.mean(dim=dim)
        mod_bar = mod.mean(dim=dim)
        obs_anom = obs - obs_bar
        mod_anom = mod - mod_bar
        p1 = (mod_anom * obs_anom).sum(dim=dim)
        p2 = ((mod_anom**2).sum(dim=dim) * (obs_anom**2).sum(dim=dim)) ** 0.5
        result = p1 / p2
        # Update history
        history = f"AC computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obs_bar = np.ma.mean(obs, axis=axis)
        mod_bar = np.ma.mean(mod, axis=axis)
        if axis is not None:
            # Need to keep dims for subtraction if axis is not None
            obs_bar_kd = np.ma.mean(obs, axis=axis, keepdims=True)
            mod_bar_kd = np.ma.mean(mod, axis=axis, keepdims=True)
        else:
            obs_bar_kd = obs_bar
            mod_bar_kd = mod_bar
        obs_anom = np.subtract(obs, obs_bar_kd)
        mod_anom = np.subtract(mod, mod_bar_kd)
        p1 = np.ma.sum(np.ma.multiply(mod_anom, obs_anom), axis=axis)
        p2 = np.ma.sqrt(np.ma.multiply(np.ma.sum(obs_anom**2, axis=axis), np.ma.sum(mod_anom**2, axis=axis)))
        return p1 / p2

CCC(obs, mod, axis=None)

Concordance Correlation Coefficient (CCC).

Typical Use Cases

  • Quantifying the agreement between model and observations, accounting for precision and accuracy.
  • Used in model evaluation to assess how well model predictions agree with observations.
  • Measures how far the values deviate from the line of perfect concordance (slope=1, intercept=0).

Typical Values and Range

  • Range: -1 to 1
  • 1: Perfect agreement between model and observations
  • 0: No agreement
  • -1: Perfect negative agreement

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the coefficient.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Concordance correlation coefficient (unitless, -1 to 1).

Examples

import numpy as np from monet_stats.correlation_metrics import CCC obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 2.1, 2.9, 4.1]) CCC(obs, mod) 0.9984779299847792

Source code in src/monet_stats/correlation_metrics.py
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def CCC(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Concordance Correlation Coefficient (CCC).

    Typical Use Cases
    -----------------
    - Quantifying the agreement between model and observations, accounting for
      precision and accuracy.
    - Used in model evaluation to assess how well model predictions agree with
      observations.
    - Measures how far the values deviate from the line of perfect concordance
      (slope=1, intercept=0).

    Typical Values and Range
    ------------------------
    - Range: -1 to 1
    - 1: Perfect agreement between model and observations
    - 0: No agreement
    - -1: Perfect negative agreement

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the coefficient.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Concordance correlation coefficient (unitless, -1 to 1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import CCC
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 2.1, 2.9, 4.1])
    >>> CCC(obs, mod)
    0.9984779299847792
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        # Calculate means
        obs_mean = obs.mean(dim=dim)
        mod_mean = mod.mean(dim=dim)

        # Calculate variances and covariance
        obs_var = obs.var(dim=dim)
        mod_var = mod.var(dim=dim)
        covar = ((obs - obs_mean) * (mod - mod_mean)).mean(dim=dim)

        # Calculate CCC
        numerator = 2 * covar
        denominator = obs_var + mod_var + (obs_mean - mod_mean) ** 2
        result = numerator / denominator
        # Update history
        history = f"CCC computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        # Calculate means
        obs_mean = np.nanmean(obs, axis=axis)
        mod_mean = np.nanmean(mod, axis=axis)

        # Calculate variances and covariance
        obs_var = np.nanvar(obs, axis=axis)
        mod_var = np.nanvar(mod, axis=axis)
        if axis is not None:
            obs_mean_kd = np.nanmean(obs, axis=axis, keepdims=True)
            mod_mean_kd = np.nanmean(mod, axis=axis, keepdims=True)
        else:
            obs_mean_kd = obs_mean
            mod_mean_kd = mod_mean
        covar = np.nanmean((obs - obs_mean_kd) * (mod - mod_mean_kd), axis=axis)

        # Calculate CCC
        numerator = 2 * covar
        denominator = obs_var + mod_var + (obs_mean - mod_mean) ** 2
        return numerator / denominator

E1(obs, mod, axis=None)

Modified Coefficient of Efficiency (E1).

Typical Use Cases

  • Quantifying the efficiency of model predictions relative to observed mean, robust to outliers.
  • Used in hydrology, meteorology, and model skill assessment.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Modified coefficient of efficiency (unitless, -inf to 1).

Examples

import numpy as np from monet_stats.correlation_metrics import E1 obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) E1(obs, mod) 0.0

Source code in src/monet_stats/correlation_metrics.py
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def E1(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Modified Coefficient of Efficiency (E1).

    Typical Use Cases
    -----------------
    - Quantifying the efficiency of model predictions relative to observed mean,
      robust to outliers.
    - Used in hydrology, meteorology, and model skill assessment.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Modified coefficient of efficiency (unitless, -inf to 1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import E1
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> E1(obs, mod)
    0.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        num = abs(obs - mod).sum(dim=dim)
        denom = abs(obs - obs.mean(dim=dim)).sum(dim=dim)
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"E1 computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        num = np.ma.abs(np.subtract(obs, mod)).sum(axis=axis)
        mean_obs = np.ma.mean(obs, axis=axis, keepdims=True)
        denom = np.ma.abs(np.subtract(obs, mean_obs)).sum(axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            result = np.where((num == 0) & (denom == 0), 1.0, result)
            result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

E1_prime(obs, mod, axis=None)

Modified Coefficient of Efficiency (E1') - Alternative formulation.

Typical Use Cases

  • Quantifying the efficiency of model predictions relative to observed mean, robust to outliers.
  • Used in hydrology, meteorology, and model skill assessment as an alternative to E1.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Modified coefficient of efficiency (unitless, -inf to 1).

Examples

import numpy as np from monet_stats.correlation_metrics import E1_prime obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) E1_prime(obs, mod) 0.0

Source code in src/monet_stats/correlation_metrics.py
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
def E1_prime(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Modified Coefficient of Efficiency (E1') - Alternative formulation.

    Typical Use Cases
    -----------------
    - Quantifying the efficiency of model predictions relative to observed mean,
      robust to outliers.
    - Used in hydrology, meteorology, and model skill assessment as an
      alternative to E1.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Modified coefficient of efficiency (unitless, -inf to 1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import E1_prime
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> E1_prime(obs, mod)
    0.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_mean = obs.mean(dim=dim)
        num = abs(obs - mod).sum(dim=dim)
        denom = abs(obs - obs_mean).sum(dim=dim)
        # Handle case where denominator is 0
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"E1_prime computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obs_c, mod_c = matchedcompressed(obs, mod)
            obs_mean_kd = np.nanmean(obs_c)
        else:
            obs_c, mod_c = obs, mod
            obs_mean_kd = np.nanmean(obs_c, axis=axis, keepdims=True)

        num = np.nansum(np.abs(obs_c - mod_c), axis=axis)
        denom = np.nansum(np.abs(obs_c - obs_mean_kd), axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            if np.ndim(result) == 0:
                if num == 0 and denom == 0:
                    result = np.array(1.0)
                elif denom == 0:
                    result = np.array(-np.inf)
            else:
                result = np.where((num == 0) & (denom == 0), 1.0, result)
                result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

IOA(obs, mod, axis=None)

Index of Agreement (IOA).

Typical Use Cases

  • Quantifying the agreement between model and observations, normalized by total deviation.
  • Used in model evaluation for skill assessment.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import IOA obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) IOA(obs, mod) 0.8

Source code in src/monet_stats/correlation_metrics.py
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
def IOA(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Index of Agreement (IOA).

    Typical Use Cases
    -----------------
    - Quantifying the agreement between model and observations, normalized by
      total deviation.
    - Used in model evaluation for skill assessment.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import IOA
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> IOA(obs, mod)
    0.8
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obsmean = obs.mean(dim=dim)
        num = ((obs - mod) ** 2).sum(dim=dim)
        denom = ((abs(mod - obsmean) + abs(obs - obsmean)) ** 2).sum(dim=dim)
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"IOA computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obsmean = np.ma.mean(obs, axis=axis, keepdims=True)
        num = (np.ma.abs(np.subtract(obs, mod)) ** 2).sum(axis=axis)
        denom = ((np.ma.abs(np.subtract(mod, obsmean)) + np.ma.abs(np.subtract(obs, obsmean))) ** 2).sum(axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            result = np.where((num == 0) & (denom == 0), 1.0, result)
            result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

IOA_m(obs, mod, axis=None)

Index of Agreement (IOA), robust to masked arrays.

Typical Use Cases

  • Quantifying the agreement between model and observations, normalized by total deviation.
  • Used in model evaluation for skill assessment, robust to masked arrays.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import IOA_m obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) IOA_m(obs, mod) 0.8

Source code in src/monet_stats/correlation_metrics.py
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
def IOA_m(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Index of Agreement (IOA), robust to masked arrays.

    Typical Use Cases
    -----------------
    - Quantifying the agreement between model and observations, normalized by
      total deviation.
    - Used in model evaluation for skill assessment, robust to masked arrays.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import IOA_m
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> IOA_m(obs, mod)
    0.8
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obsmean = obs.mean(dim=dim)
        num = ((obs - mod) ** 2).sum(dim=dim)
        denom = ((abs(mod - obsmean) + abs(obs - obsmean)) ** 2).sum(dim=dim)
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"IOA_m computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obsmean = np.ma.mean(obs, axis=axis, keepdims=True)
        num = (np.ma.abs(np.subtract(obs, mod)) ** 2).sum(axis=axis)
        denom = ((np.ma.abs(np.subtract(mod, obsmean)) + np.ma.abs(np.subtract(obs, obsmean))) ** 2).sum(axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            result = np.where((num == 0) & (denom == 0), 1.0, result)
            result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

IOA_prime(obs, mod, axis=None)

Index of Agreement (IOA') - Alternative formulation.

Typical Use Cases

  • Quantifying the agreement between model and observations, normalized by total deviation.
  • Used in model evaluation for skill assessment as an alternative to IOA.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import IOA_prime obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) IOA_prime(obs, mod) 0.8

Source code in src/monet_stats/correlation_metrics.py
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
def IOA_prime(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Index of Agreement (IOA') - Alternative formulation.

    Typical Use Cases
    -----------------
    - Quantifying the agreement between model and observations, normalized by
      total deviation.
    - Used in model evaluation for skill assessment as an alternative to IOA.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import IOA_prime
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> IOA_prime(obs, mod)
    0.8
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obsmean = obs.mean(dim=dim)
        num = ((obs - mod) ** 2).sum(dim=dim)
        denom = ((abs(mod - obsmean) + abs(obs - obsmean)) ** 2).sum(dim=dim)
        # Handle case where denominator is 0
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"IOA_prime computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obs_c, mod_c = matchedcompressed(obs, mod)
            obsmean_kd = np.nanmean(obs_c)
        else:
            obs_c, mod_c = obs, mod
            obsmean_kd = np.nanmean(obs_c, axis=axis, keepdims=True)

        num = np.nansum((obs_c - mod_c) ** 2, axis=axis)
        denom = np.nansum((np.abs(mod_c - obsmean_kd) + np.abs(obs_c - obsmean_kd)) ** 2, axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            if np.ndim(result) == 0:
                if num == 0 and denom == 0:
                    result = np.array(1.0)
                elif denom == 0:
                    result = np.array(-np.inf)
            else:
                result = np.where((num == 0) & (denom == 0), 1.0, result)
                result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

KGE(obs, mod, axis=None)

Kling-Gupta Efficiency (KGE).

Typical Use Cases

  • Quantifying the overall agreement between model and observations, combining correlation, bias, and variability.
  • Used in hydrology, meteorology, and environmental model evaluation.

Typical Values and Range

  • Range: -∞ to 1
  • 1: Perfect agreement between model and observations
  • 0: Moderate skill
  • Negative values: Poor skill

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis along which to compute KGE.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Kling-Gupta efficiency (unitless, -∞ to 1).

Examples

import numpy as np from monet_stats.correlation_metrics import KGE obs = np.array([1, 2, 3]) mod = np.array([1.1, 1.9, 3.2]) KGE(obs, mod) 0.8988771192996924

Source code in src/monet_stats/correlation_metrics.py
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
def KGE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Kling-Gupta Efficiency (KGE).

    Typical Use Cases
    -----------------
    - Quantifying the overall agreement between model and observations,
      combining correlation, bias, and variability.
    - Used in hydrology, meteorology, and environmental model evaluation.

    Typical Values and Range
    ------------------------
    - Range: -∞ to 1
    - 1: Perfect agreement between model and observations
    - 0: Moderate skill
    - Negative values: Poor skill

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute KGE.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Kling-Gupta efficiency (unitless, -∞ to 1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import KGE
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([1.1, 1.9, 3.2])
    >>> KGE(obs, mod)
    0.8988771192996924
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        r = xr.corr(obs, mod, dim=dim)
        alpha = mod.std(dim=dim) / obs.std(dim=dim)
        beta = mod.mean(dim=dim) / obs.mean(dim=dim)
        result = 1.0 - ((r - 1.0) ** 2 + (alpha - 1.0) ** 2 + (beta - 1.0) ** 2) ** 0.5
        # Update history
        history = f"KGE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            from scipy.stats import pearsonr

            obsc, modc = matchedcompressed(obs, mod)
            if len(obsc) < 2:
                r = 0.0
            else:
                r, _ = pearsonr(obsc, modc)
        else:
            # Manual vectorized correlation for numpy with axis
            obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
            mod_mean = np.nanmean(mod, axis=axis, keepdims=True)
            obs_std = obs - obs_mean
            mod_std = mod - mod_mean
            num = np.nansum(obs_std * mod_std, axis=axis)
            den = np.sqrt(np.nansum(obs_std**2, axis=axis) * np.nansum(mod_std**2, axis=axis))
            with np.errstate(divide="ignore", invalid="ignore"):
                r = num / den
                r = np.where(np.isnan(r), 0.0, r)

        alpha = np.ma.std(mod, axis=axis) / np.ma.std(obs, axis=axis)
        beta = np.ma.mean(mod, axis=axis) / np.ma.mean(obs, axis=axis)
        result = 1.0 - ((r - 1.0) ** 2 + (alpha - 1.0) ** 2 + (beta - 1.0) ** 2) ** 0.5
        return result.item() if np.ndim(result) == 0 else result

R2(obs, mod, axis=None)

Coefficient of Determination (R^2, unitless).

Typical Use Cases

  • Quantifying how well model predictions explain the variance in observations.
  • Used in regression analysis, model skill assessment, and forecast verification.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Coefficient of determination (R^2).

Examples

import numpy as np from monet_stats.correlation_metrics import R2 obs = np.array([1, 2, 3, 4]) mod = np.array([1.1, 1.9, 3.2, 3.8]) R2(obs, mod) 0.9846153846153847

Source code in src/monet_stats/correlation_metrics.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def R2(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Coefficient of Determination (R^2, unitless).

    Typical Use Cases
    -----------------
    - Quantifying how well model predictions explain the variance in observations.
    - Used in regression analysis, model skill assessment, and forecast
      verification.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Coefficient of determination (R^2).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import R2
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([1.1, 1.9, 3.2, 3.8])
    >>> R2(obs, mod)
    0.9846153846153847
    """
    from scipy.stats import pearsonr

    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            # Default to all dimensions if None
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _pearsonr2(a, b):
            if np.var(a) == 0 or np.var(b) == 0:
                return 0.0
            r_val, _ = pearsonr(a, b)
            if np.isnan(r_val):
                return 0.0
            return r_val**2

        result = xr.apply_ufunc(
            _pearsonr2,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"R2 computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obsc, modc = matchedcompressed(obs, mod)
            if np.var(obsc) == 0 or np.var(modc) == 0:
                return 0.0
            r_val, _ = pearsonr(obsc, modc)
            if np.isnan(r_val):
                return 0.0
            return r_val**2
        else:
            # Manual vectorized R2
            obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
            mod_mean = np.nanmean(mod, axis=axis, keepdims=True)
            obs_std = obs - obs_mean
            mod_std = mod - mod_mean
            num = np.nansum(obs_std * mod_std, axis=axis)
            den = np.sqrt(np.nansum(obs_std**2, axis=axis) * np.nansum(mod_std**2, axis=axis))
            with np.errstate(divide="ignore", invalid="ignore"):
                r = num / den
                result = np.where(np.isnan(r), 0.0, r**2)
                return result.item() if np.ndim(result) == 0 else result

RMSE(obs, mod, axis=None)

Root Mean Square Error (RMSE, model unit).

Typical Use Cases

  • Quantifying the average magnitude of errors between model and observations.
  • Used in model evaluation, forecast verification, and regression analysis.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis or dimension along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Root mean square error value(s).

Examples

import numpy as np from monet_stats.correlation_metrics import RMSE obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) RMSE(obs, mod) 1.118033988749895

Source code in src/monet_stats/correlation_metrics.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def RMSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Root Mean Square Error (RMSE, model unit).

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of errors between model and observations.
    - Used in model evaluation, forecast verification, and regression analysis.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Root mean square error value(s).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import RMSE
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> RMSE(obs, mod)
    1.118033988749895
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        result = ((mod - obs) ** 2).mean(dim=dim, keep_attrs=True) ** 0.5
        # Update history
        history = f"RMSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        return np.ma.sqrt(np.ma.mean((np.subtract(mod, obs)) ** 2, axis=axis))

RMSEs(obs, mod, axis=None)

Root Mean Squared Error between observations and regression fit.

(RMSEs, model unit)

Typical Use Cases

  • Quantifying the error between observations and a regression fit to the model predictions.
  • Used in model evaluation to assess how well a regression fit to the model matches the observations.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray, optional Root mean squared error value(s), or None if regression fails.

Examples

import numpy as np from monet_stats.correlation_metrics import RMSEs obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) RMSEs(obs, mod) 0.7071067811865476

Source code in src/monet_stats/correlation_metrics.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def RMSEs(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray, None]:
    """
    Root Mean Squared Error between observations and regression fit.

    (RMSEs, model unit)

    Typical Use Cases
    -----------------
    - Quantifying the error between observations and a regression fit to the
      model predictions.
    - Used in model evaluation to assess how well a regression fit to the model
      matches the observations.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray, optional
        Root mean squared error value(s), or None if regression fails.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import RMSEs
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> RMSEs(obs, mod)
    0.7071067811865476
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _rmses(a, b):
            from scipy.stats import linregress

            mask = ~np.isnan(a) & ~np.isnan(b)
            if not np.any(mask):
                return np.nan
            m, c, _, _, _ = linregress(a[mask], b[mask])
            mod_hat = c + m * a
            return np.sqrt(np.mean((mod_hat - a) ** 2))

        result = xr.apply_ufunc(
            _rmses,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"RMSEs computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            try:
                from scipy.stats import linregress

                obsc, modc = matchedcompressed(obs, mod)
                m, b, _, _, _ = linregress(obsc, modc)
                mod_hat = b + m * obs
                return RMSE(obs, mod_hat, axis=axis)
            except (ValueError, ZeroDivisionError):
                return None
        else:
            # Manual vectorized regression for numpy with axis
            obs = np.asarray(obs)
            mod = np.asarray(mod)
            if axis < 0:
                axis = obs.ndim + axis

            obs_moved = np.moveaxis(obs, axis, -1)
            mod_moved = np.moveaxis(mod, axis, -1)
            other_shape = obs_moved.shape[:-1]
            obs_flat = obs_moved.reshape(-1, obs_moved.shape[-1])
            mod_flat = mod_moved.reshape(-1, mod_moved.shape[-1])

            results = []
            from scipy.stats import linregress

            for i in range(len(obs_flat)):
                mask = ~np.isnan(obs_flat[i]) & ~np.isnan(mod_flat[i])
                if np.sum(mask) < 2:
                    results.append(np.nan)
                else:
                    m, b, _, _, _ = linregress(obs_flat[i][mask], mod_flat[i][mask])
                    mod_hat = b + m * obs_flat[i]
                    results.append(np.sqrt(np.nanmean((mod_hat - obs_flat[i]) ** 2)))
            return np.array(results).reshape(other_shape)

RMSEu(obs, mod, axis=None)

Root Mean Squared Error between regression fit and model predictions.

(RMSEu, model unit)

Typical Use Cases

  • Quantifying the error between a linear regression fit to observations and the model predictions.
  • Used in model evaluation to assess how well a regression fit to obs matches the model output.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray, optional Root mean squared error value(s), or None if regression fails.

Examples

import numpy as np from monet_stats.correlation_metrics import RMSEu obs = np.array([1, 2, 3, 4]) mod = np.array([2, 2, 2, 2]) RMSEu(obs, mod) 0.7071067811865476

Source code in src/monet_stats/correlation_metrics.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def RMSEu(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray, None]:
    """
    Root Mean Squared Error between regression fit and model predictions.

    (RMSEu, model unit)

    Typical Use Cases
    -----------------
    - Quantifying the error between a linear regression fit to observations and
      the model predictions.
    - Used in model evaluation to assess how well a regression fit to obs
      matches the model output.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray, optional
        Root mean squared error value(s), or None if regression fails.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import RMSEu
    >>> obs = np.array([1, 2, 3, 4])
    >>> mod = np.array([2, 2, 2, 2])
    >>> RMSEu(obs, mod)
    0.7071067811865476
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _rmseu(a, b):
            from scipy.stats import linregress

            mask = ~np.isnan(a) & ~np.isnan(b)
            if not np.any(mask):
                return np.nan
            m, c, _, _, _ = linregress(a[mask], b[mask])
            mod_hat = c + m * a
            return np.sqrt(np.mean((mod_hat - b) ** 2))

        result = xr.apply_ufunc(
            _rmseu,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"RMSEu computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            try:
                from scipy.stats import linregress

                obsc, modc = matchedcompressed(obs, mod)
                m, b, _, _, _ = linregress(obsc, modc)
                mod_hat = b + m * obs
                return RMSE(mod_hat, mod, axis=axis)
            except (ValueError, ZeroDivisionError):
                return None
        else:
            obs = np.asarray(obs)
            mod = np.asarray(mod)
            if axis < 0:
                axis = obs.ndim + axis

            obs_moved = np.moveaxis(obs, axis, -1)
            mod_moved = np.moveaxis(mod, axis, -1)
            other_shape = obs_moved.shape[:-1]
            obs_flat = obs_moved.reshape(-1, obs_moved.shape[-1])
            mod_flat = mod_moved.reshape(-1, mod_moved.shape[-1])

            results = []
            from scipy.stats import linregress

            for i in range(len(obs_flat)):
                mask = ~np.isnan(obs_flat[i]) & ~np.isnan(mod_flat[i])
                if np.sum(mask) < 2:
                    results.append(np.nan)
                else:
                    m, b, _, _, _ = linregress(obs_flat[i][mask], mod_flat[i][mask])
                    mod_hat = b + m * obs_flat[i]
                    results.append(np.sqrt(np.nanmean((mod_hat - mod_flat[i]) ** 2)))
            return np.array(results).reshape(other_shape)

WDAC(obs, mod, axis=None)

Wind Direction Anomaly Correlation (WDAC).

Parameters

obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Modeled wind direction values (degrees). axis : int, str, or iterable of such, optional Axis along which to compute the metric.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray WDAC value(s).

Examples

import numpy as np from monet_stats.correlation_metrics import WDAC obs = np.array([350, 10, 20]) mod = np.array([345, 15, 25]) WDAC(obs, mod) 0.9992386127814763

Source code in src/monet_stats/correlation_metrics.py
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
def WDAC(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Wind Direction Anomaly Correlation (WDAC).

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed wind direction values (degrees).
    mod : numpy.ndarray or xarray.DataArray
        Modeled wind direction values (degrees).
    axis : int, str, or iterable of such, optional
        Axis along which to compute the metric.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        WDAC value(s).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import WDAC
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([345, 15, 25])
    >>> WDAC(obs, mod)
    0.9992386127814763
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obs_rad = obs * np.pi / 180.0
        mod_rad = mod * np.pi / 180.0
        obs_anom = obs_rad - obs_rad.mean(dim=dim)
        mod_anom = mod_rad - mod_rad.mean(dim=dim)
        numerator = (np.sin(obs_anom) * np.sin(mod_anom)).sum(dim=dim)
        denominator = np.sqrt((np.sin(obs_anom) ** 2).sum(dim=dim) * (np.sin(mod_anom) ** 2).sum(dim=dim))
        result = numerator / denominator
        # Update history
        history = f"WDAC computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obs_rad = np.deg2rad(obs)
        mod_rad = np.deg2rad(mod)
        if axis is not None:
            obs_bar_rad = np.ma.mean(obs_rad, axis=axis, keepdims=True)
            mod_bar_rad = np.ma.mean(mod_rad, axis=axis, keepdims=True)
        else:
            obs_bar_rad = np.ma.mean(obs_rad)
            mod_bar_rad = np.ma.mean(mod_rad)

        obs_anom = obs_rad - obs_bar_rad
        mod_anom = mod_rad - mod_bar_rad
        numerator = np.ma.sum(np.sin(obs_anom) * np.sin(mod_anom), axis=axis)
        denominator = np.ma.sqrt(
            np.ma.sum(np.sin(obs_anom) ** 2, axis=axis) * np.ma.sum(np.sin(mod_anom) ** 2, axis=axis)
        )
        return numerator / denominator

WDIOA(obs, mod, axis=None)

Wind Direction Index of Agreement (WDIOA).

Standard version.

Typical Use Cases

  • Quantifying the agreement between observed and modeled wind directions, accounting for circularity.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Typical Values and Range

  • Range: 0 to 1
  • 1: Perfect agreement between observed and modeled wind directions
  • 0: No agreement (as bad as using the mean of observations)

Parameters

obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Modeled wind direction values (degrees). axis : int, str, or iterable of such, optional Axis along which to compute the metric.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Wind direction index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import WDIOA obs = np.array([350, 10, 20]) mod = np.array([345, 15, 25]) WDIOA(obs, mod) 0.8

Source code in src/monet_stats/correlation_metrics.py
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
def WDIOA(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Wind Direction Index of Agreement (WDIOA).

    Standard version.

    Typical Use Cases
    -----------------
    - Quantifying the agreement between observed and modeled wind directions,
      accounting for circularity.
    - Used in wind energy, meteorology, and air quality studies to assess wind
      direction model performance.

    Typical Values and Range
    ------------------------
    - Range: 0 to 1
    - 1: Perfect agreement between observed and modeled wind directions
    - 0: No agreement (as bad as using the mean of observations)

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed wind direction values (degrees).
    mod : numpy.ndarray or xarray.DataArray
        Modeled wind direction values (degrees).
    axis : int, str, or iterable of such, optional
        Axis along which to compute the metric.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Wind direction index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import WDIOA
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([345, 15, 25])
    >>> WDIOA(obs, mod)
    0.8
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        num = abs(circlebias(obs - mod)).sum(dim=dim)
        mean_obs = obs.mean(dim=dim)
        denom = (abs(circlebias(mod - mean_obs)) + abs(circlebias(obs - mean_obs))).sum(dim=dim)

        result = 1.0 - (num / denom)
        result = xr.where(denom == 0, 1.0, result)

        # Update history
        history = f"WDIOA computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        num = np.ma.sum(np.ma.abs(circlebias(np.subtract(obs, mod))), axis=axis)
        mean_obs = np.ma.mean(obs, axis=axis, keepdims=True)
        denom = np.ma.sum(
            np.ma.abs(circlebias(np.subtract(mod, mean_obs))) + np.ma.abs(circlebias(np.subtract(obs, mean_obs))),
            axis=axis,
        )
        result = np.where(denom == 0, 1.0, 1.0 - (num / denom))
        return result.item() if np.ndim(result) == 0 else result

WDIOA_m(obs, mod, axis=None)

Wind Direction Index of Agreement (WDIOA_m).

Robust to masked arrays.

Typical Use Cases

  • Quantifying the agreement between observed and modeled wind directions, accounting for circularity.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Typical Values and Range

  • Range: 0 to 1
  • 1: Perfect agreement between observed and modeled wind directions
  • 0: No agreement (as bad as using the mean of observations)

Parameters

obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Modeled wind direction values (degrees). axis : int, str, or iterable of such, optional Axis along which to compute the metric.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Wind direction index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import WDIOA_m obs = np.array([350, 10, 20]) mod = np.array([345, 15, 25]) WDIOA_m(obs, mod) 0.8

Source code in src/monet_stats/correlation_metrics.py
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
def WDIOA_m(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Wind Direction Index of Agreement (WDIOA_m).

    Robust to masked arrays.

    Typical Use Cases
    -----------------
    - Quantifying the agreement between observed and modeled wind directions,
      accounting for circularity.
    - Used in wind energy, meteorology, and air quality studies to assess wind
      direction model performance.

    Typical Values and Range
    ------------------------
    - Range: 0 to 1
    - 1: Perfect agreement between observed and modeled wind directions
    - 0: No agreement (as bad as using the mean of observations)

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed wind direction values (degrees).
    mod : numpy.ndarray or xarray.DataArray
        Modeled wind direction values (degrees).
    axis : int, str, or iterable of such, optional
        Axis along which to compute the metric.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Wind direction index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import WDIOA_m
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([345, 15, 25])
    >>> WDIOA_m(obs, mod)
    0.8
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        obsmean = obs.mean(dim=dim)
        num = (abs(circlebias_m(obs - mod))).sum(dim=dim)
        denom = (abs(circlebias_m(mod - obsmean)) + abs(circlebias_m(obs - obsmean))).sum(dim=dim)

        result = 1.0 - (num / denom)
        result = xr.where(denom == 0, 1.0, result)

        # Update history
        history = f"WDIOA_m computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        obsmean = np.ma.mean(obs, axis=axis, keepdims=True)
        num = np.ma.sum(np.ma.abs(circlebias_m(np.subtract(obs, mod))), axis=axis)
        denom = np.ma.sum(
            np.ma.abs(circlebias_m(np.subtract(mod, obsmean))) + np.ma.abs(circlebias_m(np.subtract(obs, obsmean))),
            axis=axis,
        )
        result = np.where(denom == 0, 1.0, 1.0 - (num / denom))
        return result.item() if np.ndim(result) == 0 else result

WDRMSE(obs, mod, axis=None)

Wind Direction Root Mean Square Error (WDRMSE, model unit).

Standard version.

Typical Use Cases

  • Quantifying the average magnitude of wind direction errors, accounting for circularity.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Model predicted wind direction values (degrees). axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Wind direction root mean square error (degrees).

Examples

import numpy as np from monet_stats.correlation_metrics import WDRMSE obs = np.array([350, 10, 20]) mod = np.array([10, 20, 30]) WDRMSE(obs, mod) 20.0

Source code in src/monet_stats/correlation_metrics.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def WDRMSE(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Wind Direction Root Mean Square Error (WDRMSE, model unit).

    Standard version.

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of wind direction errors, accounting for
      circularity.
    - Used in wind energy, meteorology, and air quality studies to assess wind
      direction model performance.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed wind direction values (degrees).
    mod : numpy.ndarray or xarray.DataArray
        Model predicted wind direction values (degrees).
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Wind direction root mean square error (degrees).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import WDRMSE
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([10, 20, 30])
    >>> WDRMSE(obs, mod)
    20.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        result = (circlebias(mod - obs) ** 2).mean(dim=dim, keep_attrs=True) ** 0.5
        # Update history
        history = f"WDRMSE computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        return np.ma.sqrt(np.ma.mean((circlebias(np.subtract(mod, obs))) ** 2, axis=axis))

WDRMSE_m(obs, mod, axis=None)

Wind Direction Root Mean Square Error (WDRMSE, model unit).

Robust to masked arrays.

Typical Use Cases

  • Quantifying the average magnitude of wind direction errors, accounting for circularity, robust to masked arrays.
  • Used in wind energy, meteorology, and air quality studies to assess wind direction model performance.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed wind direction values (degrees). mod : numpy.ndarray or xarray.DataArray Model predicted wind direction values (degrees). axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Wind direction root mean square error (degrees).

Examples

import numpy as np from monet_stats.correlation_metrics import WDRMSE_m obs = np.array([350, 10, 20]) mod = np.array([10, 20, 30]) WDRMSE_m(obs, mod) 20.0

Source code in src/monet_stats/correlation_metrics.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def WDRMSE_m(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Wind Direction Root Mean Square Error (WDRMSE, model unit).

    Robust to masked arrays.

    Typical Use Cases
    -----------------
    - Quantifying the average magnitude of wind direction errors, accounting for
      circularity, robust to masked arrays.
    - Used in wind energy, meteorology, and air quality studies to assess wind
      direction model performance.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed wind direction values (degrees).
    mod : numpy.ndarray or xarray.DataArray
        Model predicted wind direction values (degrees).
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Wind direction root mean square error (degrees).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import WDRMSE_m
    >>> obs = np.array([350, 10, 20])
    >>> mod = np.array([10, 20, 30])
    >>> WDRMSE_m(obs, mod)
    20.0
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        result = (circlebias_m(mod - obs) ** 2).mean(dim=dim, keep_attrs=True) ** 0.5
        # Update history
        history = f"WDRMSE_m computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        return np.ma.sqrt(np.ma.mean((circlebias_m(np.subtract(mod, obs))) ** 2, axis=axis))

d1(obs, mod, axis=None)

Modified Index of Agreement (d1).

Typical Use Cases

  • Quantifying the agreement between model and observations, less sensitive to outliers than IOA.
  • Used in model evaluation for robust skill assessment.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the statistic.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Modified index of agreement (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import d1 obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) d1(obs, mod) 0.5

Source code in src/monet_stats/correlation_metrics.py
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def d1(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Modified Index of Agreement (d1).

    Typical Use Cases
    -----------------
    - Quantifying the agreement between model and observations, less sensitive
      to outliers than IOA.
    - Used in model evaluation for robust skill assessment.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the statistic.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Modified index of agreement (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import d1
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> d1(obs, mod)
    0.5
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        num = abs(obs - mod).sum(dim=dim)
        mean_obs = obs.mean(dim=dim)
        denom = (abs(mod - mean_obs) + abs(obs - mean_obs)).sum(dim=dim)
        result = 1.0 - (num / denom)
        result = xr.where((num == 0) & (denom == 0), 1.0, result)
        result = xr.where((num != 0) & (denom == 0), -np.inf, result)

        # Update history
        history = f"d1 computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        num = np.ma.abs(np.subtract(obs, mod)).sum(axis=axis)
        mean_obs = np.ma.mean(obs, axis=axis, keepdims=True)
        denom = (np.ma.abs(np.subtract(mod, mean_obs)) + np.ma.abs(np.subtract(obs, mean_obs))).sum(axis=axis)
        with np.errstate(divide="ignore", invalid="ignore"):
            result = 1.0 - (num / denom)
            result = np.where((num == 0) & (denom == 0), 1.0, result)
            result = np.where((num != 0) & (denom == 0), -np.inf, result)
        return result.item() if np.ndim(result) == 0 else result

kendalltau(obs, mod, axis=None)

Kendall rank correlation coefficient.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension name along which to compute the coefficient.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Kendall rank correlation coefficient.

Examples

import numpy as np from monet_stats.correlation_metrics import kendalltau obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) kendalltau(obs, mod) 1.0

Source code in src/monet_stats/correlation_metrics.py
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
def kendalltau(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Kendall rank correlation coefficient.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension name along which to compute the coefficient.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Kendall rank correlation coefficient.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import kendalltau
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> kendalltau(obs, mod)
    1.0
    """
    from scipy.stats import kendalltau as _kendalltau

    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _kendalltau_onlytau(a, b):
            mask = ~np.isnan(a) & ~np.isnan(b)
            if np.sum(mask) < 2:
                return np.nan
            return _kendalltau(a[mask], b[mask])[0]

        result = xr.apply_ufunc(
            _kendalltau_onlytau,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"kendalltau computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obsc, modc = matchedcompressed(obs, mod)
            if len(obsc) < 2:
                return np.nan
            return _kendalltau(obsc, modc)[0]
        else:
            # Fallback for numpy with axis: manual loop over other axes
            obs = np.asarray(obs)
            mod = np.asarray(mod)
            if axis < 0:
                axis = obs.ndim + axis

            obs_moved = np.moveaxis(obs, axis, -1)
            mod_moved = np.moveaxis(mod, axis, -1)

            other_shape = obs_moved.shape[:-1]
            obs_flat = obs_moved.reshape(-1, obs_moved.shape[-1])
            mod_flat = mod_moved.reshape(-1, mod_moved.shape[-1])

            results = []
            for i in range(len(obs_flat)):
                mask = ~np.isnan(obs_flat[i]) & ~np.isnan(mod_flat[i])
                if np.sum(mask) < 2:
                    results.append(np.nan)
                else:
                    results.append(_kendalltau(obs_flat[i][mask], mod_flat[i][mask])[0])

            return np.array(results).reshape(other_shape)

matchmasks(a1, a2)

Match and combine masks from two masked arrays.

Typical Use Cases

  • Ensuring that two arrays have the same mask for paired statistical calculations.
  • Used in metrics that require both arrays to have valid data at the same locations (e.g., correlation, regression).

Parameters

a1 : array-like or numpy.ma.MaskedArray First input array. a2 : array-like or numpy.ma.MaskedArray Second input array.

Returns

tuple of numpy.ma.MaskedArray Tuple of (a1_masked, a2_masked) with combined mask.

Examples

import numpy as np from monet.util import stats a1 = np.ma.array([1, 2, 3], mask=[0, 1, 0]) a2 = np.ma.array([4, 5, 6], mask=[0, 0, 1]) stats.matchmasks(a1, a2) (masked_array(data=[1, --, 3], mask=[False, True, False]), masked_array(data=[4, --, --], mask=[False, False, True]))

Source code in src/monet_stats/correlation_metrics.py
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def matchmasks(a1: ArrayLike, a2: ArrayLike) -> Tuple[np.ma.MaskedArray, np.ma.MaskedArray]:
    """
    Match and combine masks from two masked arrays.

    Typical Use Cases
    -----------------
    - Ensuring that two arrays have the same mask for paired statistical calculations.
    - Used in metrics that require both arrays to have valid data at the same locations (e.g., correlation, regression).

    Parameters
    ----------
    a1 : array-like or numpy.ma.MaskedArray
        First input array.
    a2 : array-like or numpy.ma.MaskedArray
        Second input array.

    Returns
    -------
    tuple of numpy.ma.MaskedArray
        Tuple of (a1_masked, a2_masked) with combined mask.

    Examples
    --------
    >>> import numpy as np
    >>> from monet.util import stats
    >>> a1 = np.ma.array([1, 2, 3], mask=[0, 1, 0])
    >>> a2 = np.ma.array([4, 5, 6], mask=[0, 0, 1])
    >>> stats.matchmasks(a1, a2)
    (masked_array(data=[1, --, 3], mask=[False,  True, False]),
     masked_array(data=[4, --, --], mask=[False, False,  True]))
    """
    mask = np.ma.getmaskarray(a1) | np.ma.getmaskarray(a2)
    return np.ma.masked_where(mask, a1), np.ma.masked_where(mask, a2)

pearsonr(obs, mod, axis=None)

Pearson correlation coefficient.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis or dimension name along which to compute the coefficient.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Pearson correlation coefficient.

Examples

import numpy as np from monet_stats.correlation_metrics import pearsonr obs = np.array([1, 2, 3]) mod = np.array([2, 4, 6]) pearsonr(obs, mod) 1.0

Source code in src/monet_stats/correlation_metrics.py
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
def pearsonr(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Pearson correlation coefficient.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis or dimension name along which to compute the coefficient.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Pearson correlation coefficient.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import pearsonr
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 4, 6])
    >>> pearsonr(obs, mod)
    1.0
    """
    from scipy.stats import pearsonr as _pearsonr

    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _pearsonr_onlyr(a, b):
            mask = ~np.isnan(a) & ~np.isnan(b)
            if np.sum(mask) < 2 or np.var(a[mask]) == 0 or np.var(b[mask]) == 0:
                return np.nan
            return _pearsonr(a[mask], b[mask])[0]

        result = xr.apply_ufunc(
            _pearsonr_onlyr,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"pearsonr computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obsc, modc = matchedcompressed(obs, mod)
            if len(obsc) < 2 or np.var(obsc) == 0 or np.var(modc) == 0:
                return 0.0
            r_val, _ = _pearsonr(obsc, modc)
            return r_val if not np.isnan(r_val) else 0.0
        else:
            # For numpy with axis, use manual vectorized correlation
            obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
            mod_mean = np.nanmean(mod, axis=axis, keepdims=True)
            obs_std = obs - obs_mean
            mod_std = mod - mod_mean
            num = np.nansum(obs_std * mod_std, axis=axis)
            den = np.sqrt(np.nansum(obs_std**2, axis=axis) * np.nansum(mod_std**2, axis=axis))
            with np.errstate(divide="ignore", invalid="ignore"):
                result = num / den
                return result.item() if np.ndim(result) == 0 else result

spearmanr(obs, mod, axis=None)

Spearman rank correlation coefficient.

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the coefficient.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Spearman rank correlation coefficient.

Examples

import numpy as np from monet_stats.correlation_metrics import spearmanr obs = np.array([1, 2, 3]) mod = np.array([2, 2, 4]) spearmanr(obs, mod) 0.8660254037844387

Source code in src/monet_stats/correlation_metrics.py
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
def spearmanr(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Spearman rank correlation coefficient.

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the coefficient.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Spearman rank correlation coefficient.

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import spearmanr
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([2, 2, 4])
    >>> spearmanr(obs, mod)
    0.8660254037844387
    """
    from scipy.stats import spearmanr as _spearmanr

    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        if axis is None:
            dim = obs.dims
        elif isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        def _spearmanr_onlyrho(a, b):
            mask = ~np.isnan(a) & ~np.isnan(b)
            if np.sum(mask) < 2:
                return np.nan
            return _spearmanr(a[mask], b[mask])[0]

        result = xr.apply_ufunc(
            _spearmanr_onlyrho,
            obs,
            mod,
            input_core_dims=[[dim] if isinstance(dim, str) else list(dim)] * 2,
            output_core_dims=[[]],
            vectorize=True,
            dask="parallelized",
            dask_gufunc_kwargs={"allow_rechunk": True},
            output_dtypes=[float],
        )
        # Update history
        history = f"spearmanr computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        if axis is None:
            obsc, modc = matchedcompressed(obs, mod)
            if len(obsc) < 2:
                return np.nan
            return _spearmanr(obsc, modc)[0]
        else:
            # Fallback for numpy with axis: manual loop over other axes
            obs = np.asarray(obs)
            mod = np.asarray(mod)
            if axis < 0:
                axis = obs.ndim + axis

            # Move axis to last position
            obs_moved = np.moveaxis(obs, axis, -1)
            mod_moved = np.moveaxis(mod, axis, -1)

            # Reshape all other axes into one
            other_shape = obs_moved.shape[:-1]
            obs_flat = obs_moved.reshape(-1, obs_moved.shape[-1])
            mod_flat = mod_moved.reshape(-1, mod_moved.shape[-1])

            results = []
            for i in range(len(obs_flat)):
                mask = ~np.isnan(obs_flat[i]) & ~np.isnan(mod_flat[i])
                if np.sum(mask) < 2:
                    results.append(np.nan)
                else:
                    results.append(_spearmanr(obs_flat[i][mask], mod_flat[i][mask])[0])

            return np.array(results).reshape(other_shape)

taylor_skill(obs, mod, axis=None)

Taylor Skill Score (TSS).

Typical Use Cases

  • Summarizing model performance in a single skill score for use in Taylor diagrams.
  • Used in climate, weather, and environmental model evaluation.

Typical Values and Range

  • Range: 0 to 1
  • 1: Perfect agreement between model and observations
  • 0: No skill

Parameters

obs : numpy.ndarray or xarray.DataArray Observed values. mod : numpy.ndarray or xarray.DataArray Model or predicted values. axis : int, str, or iterable of such, optional Axis along which to compute the skill score.

Returns

numpy.number, numpy.ndarray, or xarray.DataArray Taylor skill score (unitless, 0-1).

Examples

import numpy as np from monet_stats.correlation_metrics import taylor_skill obs = np.array([1, 2, 3]) mod = np.array([1.1, 1.9, 3.2]) taylor_skill(obs, mod) 0.9995574044955781

Source code in src/monet_stats/correlation_metrics.py
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
def taylor_skill(
    obs: Union[np.ndarray, xr.DataArray],
    mod: Union[np.ndarray, xr.DataArray],
    axis: Optional[Union[int, str, Iterable[Union[int, str]]]] = None,
) -> Union[np.number, np.ndarray, xr.DataArray]:
    """
    Taylor Skill Score (TSS).

    Typical Use Cases
    -----------------
    - Summarizing model performance in a single skill score for use in Taylor
      diagrams.
    - Used in climate, weather, and environmental model evaluation.

    Typical Values and Range
    ------------------------
    - Range: 0 to 1
    - 1: Perfect agreement between model and observations
    - 0: No skill

    Parameters
    ----------
    obs : numpy.ndarray or xarray.DataArray
        Observed values.
    mod : numpy.ndarray or xarray.DataArray
        Model or predicted values.
    axis : int, str, or iterable of such, optional
        Axis along which to compute the skill score.

    Returns
    -------
    numpy.number, numpy.ndarray, or xarray.DataArray
        Taylor skill score (unitless, 0-1).

    Examples
    --------
    >>> import numpy as np
    >>> from monet_stats.correlation_metrics import taylor_skill
    >>> obs = np.array([1, 2, 3])
    >>> mod = np.array([1.1, 1.9, 3.2])
    >>> taylor_skill(obs, mod)
    0.9995574044955781
    """
    if isinstance(obs, xr.DataArray) and isinstance(mod, xr.DataArray):
        obs, mod = xr.align(obs, mod, join="inner")
        # Handle axis vs dim
        if axis is not None and isinstance(axis, int):
            dim = obs.dims[axis]
        else:
            dim = axis

        std_obs = obs.std(dim=dim)
        std_mod = mod.std(dim=dim)
        corr = xr.corr(obs, mod, dim=dim)

        # Calculate Taylor Skill Score using the common formula
        # S = 4 * (1 + R) / ( (sigma_p/sigma_o + sigma_o/sigma_p)^2 * (1 + R_max) )
        # Assuming R_max = 1.0
        norm_std = std_mod / std_obs
        result = (4.0 * (corr + 1.0)) / ((norm_std + 1.0 / norm_std) ** 2 * 2.0)
        # Update history
        history = f"taylor_skill computed at {pd.Timestamp.now().isoformat()}"
        result.attrs["history"] = f"{result.attrs.get('history', '')}\n{history}".strip()
        return result
    else:
        std_obs = np.ma.std(obs, axis=axis)
        std_mod = np.ma.std(mod, axis=axis)
        from scipy.stats import pearsonr

        if axis is None:
            if np.ma.is_masked(obs):
                corr = pearsonr(obs.compressed(), mod.compressed())[0]
            else:
                corr = pearsonr(obs, mod)[0]
        else:
            # Vectorized correlation over axis for numpy
            obs_mean = np.nanmean(obs, axis=axis, keepdims=True)
            mod_mean = np.nanmean(mod, axis=axis, keepdims=True)
            obs_anom = obs - obs_mean
            mod_anom = mod - mod_mean
            num_corr = np.nansum(obs_anom * mod_anom, axis=axis)
            den_corr = np.sqrt(np.nansum(obs_anom**2, axis=axis) * np.nansum(mod_anom**2, axis=axis))
            with np.errstate(divide="ignore", invalid="ignore"):
                corr = num_corr / den_corr

        norm_std = std_mod / std_obs
        with np.errstate(divide="ignore", invalid="ignore"):
            result = (4.0 * (corr + 1.0)) / ((norm_std + 1.0 / norm_std) ** 2 * 2.0)
            result = np.where(np.isnan(result) | np.isinf(result), 1.0, result)
        return result.item() if np.ndim(result) == 0 else result