Benchmarks
Performance benchmarking and comparison utilities for statistical metrics.
Performance benchmarks and accuracy verification for statistical functions (Aero Protocol Compliant).
This module provides tools to benchmark the execution time of various metrics and verify their mathematical accuracy against known values.
AccuracyVerification
Suite for verifying the mathematical correctness of statistical functions.
Source code in src/monet_stats/benchmarks.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | |
__init__(tolerance=1e-10)
Initialize the verification suite.
Parameters
tolerance : float, optional Numerical tolerance for floating-point comparisons. Default is 1e-10.
Source code in src/monet_stats/benchmarks.py
216 217 218 219 220 221 222 223 224 225 | |
print_accuracy_report()
Print a formatted accuracy report to the console.
Source code in src/monet_stats/benchmarks.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | |
test_known_values()
Run a series of tests against analytically known values.
Returns
Dict[str, Dict[str, Any]] Dictionary of test results including computed vs expected values.
Source code in src/monet_stats/benchmarks.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | |
PerformanceBenchmark
Performance benchmarking suite for statistical functions.
This class enables timing analysis of metrics across different backends (NumPy, Xarray, Dask) and data sizes.
Source code in src/monet_stats/benchmarks.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | |
__init__()
Initialize the benchmark suite with an empty results dictionary.
Source code in src/monet_stats/benchmarks.py
30 31 32 | |
benchmark_function(func, obs, mod, runs=100)
Benchmark a single statistical function.
.. note::
For Dask-backed arrays, this function explicitly calls .compute()
to measure the full execution time of the calculation.
Parameters
func : Callable The function to benchmark. obs : Union[np.ndarray, xr.DataArray] Observed values. mod : Union[np.ndarray, xr.DataArray] Model values. runs : int, optional Number of iterations for averaging. Default is 100.
Returns
Dict[str, Any] Dictionary containing 'avg_time', 'std_time', 'result', and 'runs'.
Source code in src/monet_stats/benchmarks.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | |
generate_test_data(size, data_type='numpy', chunks=None)
Generate synthetic test data for benchmarking.
Parameters
size : int Number of data points to generate. data_type : str, optional Type of data to generate ('numpy' or 'xarray'). Default is 'numpy'. chunks : Optional[Dict[str, int]], optional Dask chunk sizes if data_type is 'xarray' and lazy evaluation is desired.
Returns
Tuple[Union[np.ndarray, xr.DataArray], Union[np.ndarray, xr.DataArray]] A tuple containing (obs, mod) arrays.
Source code in src/monet_stats/benchmarks.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | |
print_benchmark_report()
Print a formatted performance report to the console.
Source code in src/monet_stats/benchmarks.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | |
run_all_benchmarks(sizes=None)
Run benchmarks for a standard set of functions across multiple sizes.
Parameters
sizes : Optional[List[int]], optional List of data sizes to test. Defaults to [100, 1000, 10000].
Returns
Dict[int, Dict[str, Any]] Comprehensive benchmark results indexed by size.
Source code in src/monet_stats/benchmarks.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | |
run_comprehensive_benchmarks()
Execute both performance and accuracy suites.
Source code in src/monet_stats/benchmarks.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 | |