Physical Processes
Detailed description of the physical processes simulated in the Canopy-App model.
Canopy Meteorology
Wind Flow Through Vegetation
Above-Canopy Flow
The wind profile above the canopy follows Monin-Obukhov similarity theory:
Parameters:
- u_star
: Friction velocity (m/s)
- kappa
: von Kármán constant (0.41)
- d
: Displacement height (m)
- z0
: Roughness length (m)
- L
: Obukhov length (m)
- psi_m
: Momentum stability function
Within-Canopy Flow
Wind speed decreases exponentially through the canopy:
Where:
- alpha = LAD_profile * Cd * h
(attenuation coefficient)
- LAD_profile
: Leaf area density profile (m²/m³)
- Cd
: Drag coefficient (~0.2-0.3)
- h
: Canopy height (m)
Implementation
See module canopy_wind_mod.F90
:
- calc_wind_most()
- Main wind calculation routine
Temperature Profiles
Energy Balance
rho
: Air density (kg/m³)
Radiation Transfer
Photosynthetically Active Radiation (PAR)
PAR calculation for photosynthesis and biogenic emissions:
Where:
- K_par
: PAR extinction coefficient
- LAI_cumulative
: Cumulative LAI from canopy top
Implementation
See module canopy_rad_mod.F90
:
calc_par_profile()
- PAR calculationscalc_extinction_coeff()
- Light extinctioncanopy_fsun_clu()
- Main radiation routine
Boundary Layer Processes
canopy_eddyx()
- Main turbulence routine
Roughness Parameters
Calculated from canopy structure:
Where h is canopy height.
Canopy-Atmosphere Coupling
Feedback Mechanisms
- Canopy modification of atmospheric profiles
- Surface flux responses to atmospheric forcing
- Momentum absorption by vegetation
- Scalar transport through canopy layers
Implementation
See modules:
- canopy_profile_mod.F90
- Vertical profile calculations
- canopy_utils_mod.F90
- Interpolation and utilities
Model Numerics
Vertical Grid
Layer Structure
- Exponential spacing for fine resolution near ground
- Uniform spacing through main canopy
- Stretched grid above canopy
Grid Generation
! Exponential grid near surface
do k = 1, nlevs_surface
z(k) = z_min * exp((k-1) * dz_factor)
end do
! Uniform grid in canopy
do k = nlevs_surface+1, nlevs_canopy
z(k) = z_canbot + (k - nlevs_surface) * dz_uniform
end do
Time Integration
Stability Criteria
Time step limited by:
- CFL condition: dt < dz / u_max
- Diffusion condition: dt < dz² / (2 * K_max)
Validation Data
Field Observations
Model validated against measurements from: - AmeriFlux tower sites - FLUXNET database - Specialized canopy experiments
Typical Performance
Variable | Correlation (R²) | RMSE |
---|---|---|
Wind Speed | 0.85-0.95 | 0.5-1.0 m/s |
Temperature | 0.90-0.98 | 1.0-2.0 K |
Humidity | 0.75-0.90 | 5-10% |
Radiation | 0.95-0.99 | 10-20 W/m² |
Navigation
- Model Description - Overall model framework
- Chemical Processes - Chemistry and emissions
- Parameterizations - Mathematical details
- API Reference - Implementation details