Chemical Processes
Detailed description of chemical processes and photochemistry in the Canopy-App model.
Overview
The Canopy-App includes comprehensive treatment of chemical processes within and above forest canopies, focusing on:
- Biogenic emission chemistry
- Photolysis rate calculations
- Gas-phase chemical reactions
- Dry deposition of chemical species
Biogenic Emission Chemistry
Volatile Organic Compounds (VOCs)
Isoprene Emissions
Isoprene (C₅H₈) is the most abundant biogenic VOC, following the Guenther et al. (2012) algorithms:
Where:
- ε_iso
: Base emission factor (μg g⁻¹ h⁻¹)
- γ_T
: Temperature activity factor
- γ_P
: PAR (photosynthetically active radiation) activity factor
- γ_SM
: Soil moisture activity factor
- ρ_foliage
: Foliar density (g m⁻³)
Temperature Dependence
! Temperature activity factor
γ_T = E_opt × C_T2 × exp(C_T1 × (T - T_s)) /
(C_T2 - C_T1 × (1 - exp(C_T2 × (T - T_s))))
Parameters:
- E_opt
: Maximum normalized emission capacity
- C_T1
: Empirical coefficient (95,000 J mol⁻¹)
- C_T2
: Empirical coefficient (230,000 J mol⁻¹)
- T_s
: Standard temperature (303 K)
Light Dependence
Where:
- α
: Empirical coefficient (0.0027 mol⁻¹ m² s)
- PAR
: Photosynthetically active radiation (μmol m⁻² s⁻¹)
Implementation
See module canopy_bioemi_mod.F90
:
- calc_isoprene_emission()
- Main isoprene calculation
- temperature_activity()
- Temperature dependence
- light_activity()
- Light dependence
Monoterpene Emissions
Temperature-Only Dependence
Monoterpenes (α-pinene, β-pinene, limonene) depend only on temperature:
Where:
- β
: Temperature coefficient (0.09 K⁻¹)
- Other variables as defined for isoprene
Species-Specific Factors
! Individual monoterpene species
E_α_pinene = 0.5 × E_mono ! 50% of total
E_β_pinene = 0.3 × E_mono ! 30% of total
E_limonene = 0.2 × E_mono ! 20% of total
Other Biogenic VOCs
Methanol and Acetone
! Light-independent emissions
E_methanol = ε_methanol × γ_T × ρ_foliage
E_acetone = ε_acetone × γ_T × ρ_foliage
Sesquiterpenes
Photolysis Rate Calculations
Actinic Flux
Above-Canopy Calculation
Solar actinic flux above the canopy:
Where:
- F_0(λ)
: Extraterrestrial solar flux
- SZA
: Solar zenith angle
- τ_atm(λ)
: Atmospheric transmission
Within-Canopy Attenuation
Direct beam component:
Diffuse component:
Dry Deposition
Species-Specific Deposition
Ozone Deposition
Surface resistance components:
! Stomatal pathway
R_s = R_s_min × (1 + (D_s/D_0)^n) × f(T) × f(Ψ_l)
! Non-stomatal pathway
R_ns = R_cut + R_soil + R_water
NO₂ Deposition
Where: - Stomatal uptake dominates during day - Cuticular uptake important at night
SO₂ Deposition
Model Validation
Chamber Studies
Comparison with environmental chamber experiments: - Isoprene + OH: SOA yields within 20% - α-Pinene + O₃: Product distributions match - NOₓ photochemistry: Ozone production rates validated
Field Measurements
Validation against flux tower and aircraft data: - Emission fluxes: Within factor of 2 - Concentration profiles: R² > 0.8 - Photolysis rates: ±30% of measured values
References
Key Chemical Papers
- Guenther, A.B., et al. (2012). "MEGAN2.1: Model of Emissions of Gases and Aerosols from Nature." Geosci. Model Dev., 5, 1471-1492.
- Saylor, R. D. (2013). "The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy" Atmos. Chem. Phys., 13, 693–715, https://doi.org/10.5194/acp-13-693-2013, 2013.
- Makar, P., Staebler, R., Akingunola, A. et al. (2017). "The effects of forest canopy shading and turbulence on boundary layer ozone." Nat. Commun. 8, 15243 (2017). https://doi.org/10.1038/ncomms15243
- Saylor, R. D. (2013). "The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy" Atmos. Chem. Phys., 13, 693–715, https://doi.org/10.5194/acp-13-693-2013, 2013.
- Makar, P., Staebler, R., Akingunola, A. et al. (2017). "The effects of forest canopy shading and turbulence on boundary layer ozone." Nat. Commun. 8, 15243 (2017). https://doi.org/10.1038/ncomms15243
Navigation
- Model Description - Overall model framework
- Physical Processes - Meteorology and turbulence
- Parameterizations - Mathematical formulations
- API Reference - Implementation details