References & Bibliography
This section contains the complete bibliography and references for the Canopy-App model, including the scientific basis for the parameterizations and algorithms used.
Core Model References
Wind and Turbulence
Massman, W. J., Forthofer, J. M., & Finney, M. A. (2017). An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Canadian Journal of Forest Research, 47(5), 594-603. https://doi.org/10.1139/cjfr-2016-0354
Katul, G. G., Mahrt, L., Poggi, D., & Sanz, C. (2004). One- and two-equation models for canopy turbulence. Boundary-Layer Meteorology, 113, 81-109. https://doi.org/10.1023/B:BOUN.0000037333.48760.e5
Makar, P., Staebler, R., Akingunola, A., et al. (2017). The effects of forest canopy shading and turbulence on boundary layer ozone. Nature Communications, 8, 15243. https://doi.org/10.1038/ncomms15243
Roughness Sublayer and Unified Parameterizations
Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., & Burakowski, E. A. (2018). Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geoscientific Model Development, 11, 1467-1496. https://doi.org/10.5194/gmd-11-1467-2018
Abolafia-Rosenzweig, R., He, C., Burns, S. P., & Chen, F. (2021). Implementation and evaluation of a unified turbulence parameterization throughout the canopy and roughness sublayer in Noah-MP snow simulations. Journal of Advances in Modeling Earth Systems, 13, e2021MS002665. https://doi.org/10.1029/2021MS002665
Biogenic Emissions
MEGAN Model Development
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., & Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100(D5), 8873-8892. https://doi.org/10.1029/94JD02950
Guenther, A., Baugh, B., Brasseur, G., Greenberg, J., Harley, P., Klinger, L., Serça, D., & Vierling, L. (1999). Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. Journal of Geophysical Research, 104(D23), 30625-30639. https://doi.org/10.1029/1999JD900391
Advanced MEGAN Parameterizations
Silva, S. J., Heald, C. L., & Guenther, A. B. (2020). Development of a reduced-complexity plant canopy physics surrogate model for use in chemical transport models: a case study with GEOS-Chem v12.3.0. Geoscientific Model Development, 13, 2569-2585. https://doi.org/10.5194/gmd-13-2569-2020
Clifton, O. E., Patton, E. G., Wang, S., Barth, M., Orlando, J., & Schwantes, R. H. (2022). Large eddy simulation for investigating coupled forest canopy and turbulence influences on atmospheric chemistry. Journal of Advances in Modeling Earth Systems, 14, e2022MS003078. https://doi.org/10.1029/2022MS003078
CO₂ Inhibition Studies
Possell, M., & Hewitt, C. N. (2011). Isoprene emissions from plants are mediated by atmospheric CO₂ concentrations. Global Change Biology, 17, 1595-1610. https://doi.org/10.1111/j.1365-2486.2010.02306.x
Wilkinson, M. J., Monson, R. K., Trahan, N., Lee, S., Brown, E., Jackson, R. B., Polley, H. W., Fay, P. A., & Fall, R. (2009). Leaf isoprene emission rate as a function of atmospheric CO₂ concentration. Global Change Biology, 15, 1189-1200. https://doi.org/10.1111/j.1365-2486.2008.01803.x
Leaf Age and Environmental Stress
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
Fang, H., Wei, S., & Liang, S. (2019). Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sensing of Environment, 119, 43-54.
Zou, J., Rogers, W. E., & Siemann, E. (2009). Plasticity of Sapium sebiferum seedling growth to light and water resources: Inter- and intraspecific comparisons. Basic and Applied Ecology, 10, 79-88.
Dry Deposition
Gas Dry Deposition Parameterizations
Zhang, L., Brook, J. R., & Vet, R. (2003). A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics, 3, 2067-2082. https://doi.org/10.5194/acp-3-2067-2003
Saylor, R. D. (2013). The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy. Atmospheric Chemistry and Physics, 13, 693-715. https://doi.org/10.5194/acp-13-693-2013
Urban Dry Deposition
Gao, J., & Shen, H. (2018). A review of dry deposition of air pollutants on building surfaces and its influence on indoor air quality. Building and Environment, 132, 205-217. https://doi.org/10.1016/j.buildenv.2018.02.046
Chemical Mechanisms
Goliff, W. S., Stockwell, W. R., & Lawson, C. V. (2013). The regional atmospheric chemistry mechanism, version 2. Atmospheric Environment, 68, 174-185. https://doi.org/10.1016/j.atmosenv.2012.11.038
Soil and Root Distribution
Zeng, X. (2001). Global vegetation root distribution for land modeling. Journal of Hydrometeorology, 2, 525-530. https://doi.org/10.1175/1525-7541(2001)002<0525:GVRDFL>2.0.CO;2
Fire and Flame Height
Alexander, M. E., & Cruz, M. G. (2012). Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. International Journal of Wildland Fire, 21, 95-113. https://doi.org/10.1071/WF11001
Data Sources and Satellite Products
Canopy Structure Data
Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 7, 1778-1789. https://doi.org/10.1038/s41559-023-02206-6
Wei, S., Fang, H., Schaaf, C. B., He, L., & Chen, J. M. (2019). Global 500 m clumping index product derived from MODIS BRDF data (2001-2017). Remote Sensing of Environment, 232, 111296. https://doi.org/10.1016/j.rse.2019.111296
VIIRS Products
Myneni, R. (2023). VIIRS/NPP Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V002. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/VIIRS/VNP15A2H.002
Myneni, R. (2023). VIIRS/NOAA20 Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V002. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/VIIRS/VJ115A2H.002
GEDI Products
GEDI Product from North Arizona University. https://goetzlab.rc.nau.edu/index.php/gedi/. Plant area volume density data (2019-2022) with 14 vertical layers from surface to 70m above ground level.
GriddingMachine
Wang, Y., Konings, A. G., Le Vine, N., Prigent, C., Piles, M., Fluet-Chouinard, E., Gascoin, S., Mialon, A., Wigneron, J. P., Fan, L., Kerr, Y. H., & Fernandez-Moran, R. (2022). A new global dataset of microwave vegetation optical depth. Scientific Data, 9, 342. https://doi.org/10.1038/s41597-022-01346-x
Model Coupling and Applications
Large Eddy Simulation Studies
Clifton, O. E., Patton, E. G., Wang, S., Barth, M., Orlando, J., & Schwantes, R. H. (2022). Large eddy simulation for investigating coupled forest canopy and turbulence influences on atmospheric chemistry. Journal of Advances in Modeling Earth Systems, 14, e2022MS003078. https://doi.org/10.1029/2022MS003078
Monin-Obukhov Length Calculations
Essa, K. S. M. (1999). Estimation of Monin-Obukhov length using Richardson number and surface layer wind speed. International Atomic Energy Agency Technical Document, IAEA-TECDOC-1106, 215-224.
Software and Tools
Python Solar Calculations
Pysolar Documentation. Solar position calculations used for cosine solar zenith angle. https://pysolar.readthedocs.io/en/latest/
Fortran Namelist Processing
f90nml Documentation. Python library for reading and writing Fortran namelists. https://f90nml.readthedocs.io/en/latest/
Standards and Conventions
NetCDF Climate and Forecast Conventions
CF Conventions. Climate and Forecast metadata conventions for NetCDF files. http://cfconventions.org/
EPA Air Quality Standards
U.S. Environmental Protection Agency. W126 ozone exposure index calculation methodology. https://www.epa.gov/sites/default/files/2015-09/documents/w126_steps_to_calculate_revised_feb19.pdf
Data Repositories and Archives
NOAA Data Sources
NOAA/NESDIS GBBEPx. Global Biomass Burning Emissions Product. https://www.ospo.noaa.gov/Products/land/gbbepx/
NOAA VIIRS Green Vegetation Fraction. https://www.star.nesdis.noaa.gov/jpss/gvf.php
NOAA CLASS Archive. Comprehensive Large Array-data Stewardship System. https://www.aev.class.noaa.gov/
AWS Open Data
NOAA OAR ARL AWS Archive. https://registry.opendata.aws/noaa-oar-arl-nacc-pds/
- Global GFS meteorological files: https://noaa-oar-arl-nacc-pds.s3.amazonaws.com/inputs/
- Global 13-km canopy files: https://noaa-oar-arl-nacc-pds.s3.amazonaws.com/inputs/geo-files/
NCEI Archive
NOAA National Centers for Environmental Information. Global 1-km canopy data representative of 2020. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0295750
How to Cite
Primary Citation
When using Canopy-App in research, please cite:
Campbell, P. C., Moon, Z., Hung, W.-T., Marvin, M., Rasool, Q., et al. (2024). Canopy-App: A repository for low-level, stand-alone/column canopy parameterizations for atmospheric composition and air quality models. Zenodo. https://doi.org/10.5281/zenodo.8403649
Component-Specific Citations
When using specific components, please also cite the relevant scientific papers listed above:
- Wind calculations: Massman et al. (2017)
- Biogenic emissions: Guenther et al. (2012), Silva et al. (2020)
- Dry deposition: Zhang et al. (2003), Saylor (2013)
- Turbulence: Makar et al. (2017), Katul et al. (2004)
Data Sources
Please also acknowledge the data sources used in your application: - GFS meteorological data: NOAA/NCEP - VIIRS products: NASA/NOAA - GEDI canopy height: NASA/North Arizona University - Satellite-derived parameters: As listed in the data sources section above
This bibliography is maintained as part of the Canopy-App documentation. For the most current references and additional citations, please refer to the source code comments and the main README.md file.